給定一個正方形,將它分成大小和形狀完全相同的四個部分,四名同學(xué)分別給出了分割方案:

甲:分別連結(jié)正方形兩組對邊的中點.

乙:作正方形的兩條對角線.

丙:過其中心任作兩條互相垂直的直線.

。鹤饕粭l曲線連結(jié)正方形邊上的任一點和其中心,再將這條曲線逆時針旋轉(zhuǎn)90°、180°和270°,你認為他們都能達到要求嗎?

如果能達到要求,請你按分割方案畫出圖形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

27、將圖1,將一張直角三角形紙片ABC折疊,使點A與點C重合,這時DE為折痕,△CBE為等腰三角形;再繼續(xù)將紙片沿△CBE的對稱軸EF折疊,這時得到了兩個完全重合的矩形(其中一個是原直角三角形的內(nèi)接矩形,另一個是拼合成的無縫隙、無重疊的矩形),我們稱這樣兩個矩形為“疊加矩形”.

(1)如圖2,正方形網(wǎng)格中的△ABC能折疊成“疊加矩形”嗎?如果能,請在圖2中畫出折痕;
(2)如圖3,在正方形網(wǎng)格中,以給定的BC為一邊,畫出一個斜三角形ABC,使其頂點A在格點上,且△ABC折成的“疊加矩形”為正方形;
(3)如果一個三角形所折成的“疊加矩形”為正方形,那么它必須滿足的條件是
三角形一邊長與該邊上的高相等
;
(4)如果一個四邊形一定能折成“疊加矩形”,那么它必須滿足的條件是
對角線互相垂直

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖①,將一張直角三角形紙片△ABC折疊,使點A與點C重合,這時DE為折痕,△CBE為等腰三角形;再繼續(xù)將紙片沿△CBE的對稱軸EF折疊,這時得到了兩個完全重合的矩形(其中一個是原直角三角形的內(nèi)接矩形,另一個是拼合成的無縫隙、無重疊的矩形),我們稱這樣兩個矩形為“疊加矩形”.
(1)如圖②,正方形網(wǎng)格中的△ABC能折疊成“疊加矩形”嗎?如果能,請在圖②中畫出折痕;
(2)如圖③,在正方形網(wǎng)格中,以給定的BC為一邊,畫出一個斜三角形ABC,使其頂點A在格點上,且△ABC折成的“疊加矩形”為正方形;
(3)若一個三角形所折成的“疊加矩形”為正方形,那么它必須滿足的條件是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

等腰三角形是我們熟悉的圖形之一,下面介紹一種等分等邊三角形面積的方法:如圖(1),在△ABC中,AB=AC,把底邊BC分成m等份,連接頂點A和底邊BC各等分點的線段,即可把這個三角形的面積m等分.
問題的提出:任意給定一個正n邊形,你能把它的面積m等分嗎?
探究與發(fā)現(xiàn):為了解決這個問題,我們先從簡單問題入手:怎樣從正三角形的中一心(正多邊形的各對稱軸的交點,又稱為正多邊形的中心)引線段,才能將這個正三角形的面積m等分?
如果要把正三角形的面積四等分,我們可以先連接正三角形的中心和各頂點(如圖(2),這些線段將這個正三角形分成了三個全等的等腰三角形);再把所得的每個等腰三角形的底邊四等分,連接中心和各邊等分點(如圖(3),這些線段把這個正三角形分成了12個面積相等的小三角形);最后,依次把相鄰的三個小三角形拼合在一起(如圖(4)).這樣就把正三角形的面積四等分.

(1)實驗與驗證:依照上述方法,利用刻度尺,在圖(5)中畫出一種將正三角形的面積五等分的簡單示意圖;
(2)猜想與證明:怎樣從正三角形的中心引線段,才能將這個正三角形的面積m等分?敘述你的分法并說明理由;
(3)拓展與延伸:怎樣從正方形的中心引線段,才能將這個正方形的面積m等分?(敘述方法即可,不需說明理由)
(4)向題解決:怎樣從正n邊形的中心引線段,才能將這個正n邊形的面積m等分?(敘述分法即可,不需說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,將一張直角三角形紙片ABC折疊,使A與C重合,這時DE為折底,△CBE為等腰三角形,再將紙片沿△CBE的對稱軸EF折疊,這時得到一個折疊而成的無縫隙、無重疊的矩形,這個矩形稱為“折得矩形”.精英家教網(wǎng)
(1)如圖②,正方形網(wǎng)格中的△ABC能折成“折得矩形”嗎?,若能,請在圖②中畫出折痕;
(2)如圖③,正方形網(wǎng)格中,以給定的BC為一邊,畫出一個斜△ABC,使其頂點A在格點上,且由△ABC折成的“折得矩形”為正方形;
(3)如果一個三角形折成的“折得矩形”為正方形,那么它必須滿足的條件是
 

(4)若一個四邊形能折成“折得矩形”,那么它必須滿足的條件是
 

查看答案和解析>>

同步練習(xí)冊答案