如圖,在△ABC中,AD⊥BC于D,點(diǎn)M、N分別在BC所在的直線上,且AB=AC,BM=CN,試判斷△AMN的形狀,并說(shuō)明理由.
【考點(diǎn)】等腰三角形的判定.
【分析】根據(jù)等腰三角形的性質(zhì)可以得出∠ABC=∠ACB,再由平角的性質(zhì)可以得出∠ABM=∠ACN,就可以得出△AMB≌△ANC,就可以得出結(jié)論.
【解答】解:等腰三角形,理由如下,
∵AB=AC,
∴∠ABC=∠ACB.
∵∠ABC+∠ABM=180°,∠ACB+∠ACN=180°,
∴∠ABM=∠ACN.
在△AMB和△ANC中,
,
∴△AMB≌△ANC(ASA),
∴AM=AN,
∴△AMN是等腰三角形.
【點(diǎn)評(píng)】本題考查了等腰三角形的性質(zhì)的運(yùn)用,平角的性質(zhì)的運(yùn)用,全等三角形的判定與性質(zhì)的運(yùn)用,解答時(shí)證明三角形全等是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,將三角尺的直角頂點(diǎn)放在直尺的一邊上,∠1=30°,∠2=50°,則∠3的度數(shù)等于( )
A.50° B.30° C.20° D.15°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知D為△ABC邊BC延長(zhǎng)線上一點(diǎn),DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,∠ABC=∠DEF,AB=DE,要證明△ABC≌△DEF,需要添加一個(gè)條件為:__________(只添加一個(gè)條件即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知,△ABC是等腰直角三角形,BC=AB,A點(diǎn)在x負(fù)半軸上,直角頂點(diǎn)B在y軸上,點(diǎn)C在x軸上方.
(1)如圖1所示,若A的坐標(biāo)是(﹣3,0),點(diǎn)B的坐標(biāo)是(0,﹣1),求點(diǎn)C的坐標(biāo);
(2)如圖2,過(guò)點(diǎn)C作CD⊥y軸于D,請(qǐng)直接寫(xiě)出線段OA、OD、CD之間等量關(guān)系;
(3)如圖3,若x軸恰好平分∠BAC,BC與x軸交于點(diǎn)E,過(guò)點(diǎn)C作CF⊥x軸于F,問(wèn)CF與AE有怎樣的數(shù)量關(guān)系?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
下列命題是真命題的是( )
A.兩邊及一個(gè)角對(duì)應(yīng)相等的兩三角形全等
B.兩角及一邊對(duì)應(yīng)相等的兩三角形全等
C.三個(gè)角對(duì)應(yīng)相等的兩三角形全等
D.面積相等的兩三角形全等
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com