【題目】已知關(guān)于x的一元二次方程x2﹣(2m+3)x+m2+2=0.
(1)若方程有實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;
(2)若方程兩實(shí)數(shù)根分別為x1、x2,且滿足x12+x22=31+|x1x2|,求實(shí)數(shù)m的值.
【答案】(1)m≥﹣;(2)m=2.
【解析】
(1)利用判別式的意義得到(2m+3)2﹣4(m2+2)≥0,然后解不等式即可;
(2)根據(jù)題意x1+x2=2m+3,x1x2=m2+2,由條件得x12+x22=31+x1x2,再利用完全平方公式得(x1+x2)2﹣3x1x2﹣31=0,所以2m+3)2﹣3(m2+2)﹣31=0,然后解關(guān)于m的方程,最后利用m的范圍確定滿足條件的m的值.
(1)根據(jù)題意得(2m+3)2﹣4(m2+2)≥0,
解得m≥﹣;
(2)根據(jù)題意x1+x2=2m+3,x1x2=m2+2,
因?yàn)?/span>x1x2=m2+2>0,
所以x12+x22=31+x1x2,
即(x1+x2)2﹣3x1x2﹣31=0,
所以(2m+3)2﹣3(m2+2)﹣31=0,
整理得m2+12m﹣28=0,解得m1=﹣14,m2=2,
而m≥﹣;
所以m=2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與坐標(biāo)軸交點(diǎn)分別為,,,作直線BC.
求拋物線的解析式;
點(diǎn)P為拋物線上第一象限內(nèi)一動(dòng)點(diǎn),過點(diǎn)P作軸于點(diǎn)D,設(shè)點(diǎn)P的橫坐標(biāo)為,求的面積S與t的函數(shù)關(guān)系式;
條件同,若與相似,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩地相距150km,甲、乙兩人先后從A地出發(fā)向B地行駛,甲騎摩托車勻速行駛,乙開汽車且途中速度只改變一次,如圖表示的是甲、乙兩人之間的距離S關(guān)于時(shí)間t的函數(shù)圖象(點(diǎn)F的實(shí)際意義是乙開汽車到達(dá)B地),請根據(jù)圖象解答下列問題:
(1)求出甲的速度;
(2)求出乙前后兩次的速度,并求出點(diǎn)E的坐標(biāo);
(3)當(dāng)甲、乙兩人相距10km時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】紅燈籠,象征著闔家團(tuán)圓,紅紅火火,掛燈籠成為我國的一種傳統(tǒng)文化.小明在春節(jié)前購進(jìn)甲、乙兩種紅燈籠,用3120元購進(jìn)甲燈籠與用4200元購進(jìn)乙燈籠的數(shù)量相同,已知乙燈籠每對進(jìn)價(jià)比甲燈籠每對進(jìn)價(jià)多9元.
(1)求甲、乙兩種燈籠每對的進(jìn)價(jià);
(2)經(jīng)市場調(diào)查發(fā)現(xiàn),乙燈籠每對售價(jià)50元時(shí),每天可售出98對,售價(jià)每提高1元,則每天少售出2對:物價(jià)部門規(guī)定其銷售單價(jià)不高于每對65元,設(shè)乙燈籠每對漲價(jià)x元,小明一天通過乙燈籠獲得利潤y元.
①求出y與x之間的函數(shù)解析式;
②乙種燈籠的銷售單價(jià)為多少元時(shí),一天獲得利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(–4,n),B(2,–4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)的圖象的兩個(gè)交點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求直線AB與x軸的交點(diǎn)C的坐標(biāo)及△AOB的面積;
(3)求不等式的解集(請直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到,其中點(diǎn)A′與點(diǎn)A是對應(yīng)點(diǎn),點(diǎn)B′與點(diǎn)B是對應(yīng)點(diǎn),連接AB′,且A、B′、A′在同一條直線上,則AA′的長為______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點(diǎn),將△ABE沿BE折疊后得到△GBE,延長BG交CD于F點(diǎn),若CF=1,F(xiàn)D=2,則BC的長為【 】
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在邊長為10的菱形ABCD中,cos∠B=,點(diǎn)E為BC邊上的中點(diǎn),點(diǎn)F為邊AB邊上一點(diǎn),連接EF,過點(diǎn)B作EF的對稱點(diǎn)B′,
(1)在圖(1)中,用無刻度的直尺和圓規(guī)作出點(diǎn)B′(不寫作法,保留痕跡);
(2)當(dāng)△EFB′為等腰三角形時(shí),求折痕EF的長度.
(3)當(dāng)B′落在AD邊的中垂線上時(shí),求BF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形的頂點(diǎn)在軸的正半軸上,.對角線相交于點(diǎn),反比例函數(shù)的圖像經(jīng)過點(diǎn),分別與交于點(diǎn).
(1)若,求的值;
(2)連接,若,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com