精英家教網 > 初中數學 > 題目詳情

【題目】在一次羽毛球賽中,甲運動員在離地面米的P點處發(fā)球,球的運動軌跡PAN看作一個拋物線的一部分,當球運動到最高點A時,其高度為3米,離甲運動員站立地點O的水平距離為5米,球網BC離點O的水平距離為6米,以點O為原點建立如圖所示的坐標系,乙運動員站立地點M的坐標為(m,0.

1)求拋物線的解析式(不要求寫自變量的取值范圍);

2)求羽毛球落地點N離球網的水平距離(即NC的長);

3)乙原地起跳后可接球的最大高度為2.4米,若乙因為接球高度不夠而失球,求m的取值范圍.

【答案】1y=﹣x52+3;(2CN31(米);(3m的取值范圍為:6m8

【解析】

1)設拋物線解析式為yax523,將點(0,)代入可得出a的值,繼而得出拋物線解析式;

2)令y0,可得出ON的長度,由NCONOC即可得出答案;

3)先計算出剛好接到球時m的值,從而結合所給圖形可得出運動員接球高度不夠m的取值范圍.

1)設拋物線解析式為yax52+3,

將點(0)代入可得:a052+3

解得:a=﹣,

故拋物線的解析式為:y=﹣x52+3

2)當y0時,﹣x52+30

解得:x153(舍去),x25+3,

ON5+3,

OC6,

CN31(米);

3)若運動員乙原地起跳到最大高度時剛好接到球,

此時﹣m52+32.4,

解得:m12m28

∵運動員接球高度不夠,

2m8,

OC6,乙運動員接球時不能觸網,

m的取值范圍為:6m8

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】穿樓而過的輕軌、《千與千尋》現實版洪崖洞、空中巴士長江索道……,“3D魔幻城”吸引著海量游客前來重慶打卡.2018年的清明節(jié)和“五一”節(jié),洪崖洞入圍全球旅游熱門目的地榜單,排名僅次于故宮.位于洪崖洞的重慶知名火鍋小天鵝火鍋在節(jié)日期間每天也人滿為患,其中鴛鴦火鍋和紅湯火鍋最受游客青睞.在清明節(jié)期間,前來就餐選擇鴛鴦火鍋和紅湯火鍋的游客共有2200名,鴛鴦火鍋和紅湯火鍋的人均消費分別為130元和120元.

(1)清明節(jié)期間,若選擇紅湯火鍋的人數不超過鴛鴦火鍋人數的1.5倍.求至少有多少人選擇鴛鴦火鍋?

(2)“五一”節(jié)期間,因天氣漸熱的原因,前來就餐的游客人數有所下降,與(1)問中選擇鴛鴦火鍋的人數最少時相比,選擇兩種火鍋的人數均下降了a%;人均消費與清明節(jié)期間相比均有所上升,其中鴛鴦火鍋的人均消費上漲了a%,紅湯火鍋的人均消費上漲了%,最終“五一”節(jié)期間兩種火鍋的總銷售額與(1)問中選擇鴛鴦火鍋的人數最少時的兩種火鍋的總銷售額持平,求a的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】10分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調查發(fā)現,這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.

1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數式表示);

2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知P是⊙O上一點,過點P作不過圓心的弦PQ,在劣弧PQ和優(yōu)弧PQ上分別有動點A、B(不與P,Q重合),連接AP、BP. 若∠APQ=BPQ.

(1)如圖1,當∠APQ=45°,AP=1,BP=2時,求⊙O的半徑;

(2)如圖2,選接AB,交PQ于點M,點N在線段PM(不與P、M重合),連接ON、OP,若∠NOP+2OPN=90°,探究直線ABON的位置關系,并證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,先將拋物線y2x24x關于y軸作軸對稱變換,再將所得的拋物線,繞它的頂點旋轉180°,那么經兩次變換后所得的新拋物線的函數表達式為( 。

A.y=﹣2x4xB.y=﹣2x+4x

C.y=﹣2x4x4D.y=﹣2x+4x+4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定這個四邊形是平行四邊形的是

A.ABDC,ADBC  B.AB=DC,AD=BC

C.AO=CO,BO=DO   D.ABDC,AD=BC

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A1的坐標為(2,0),過點A1x軸的垂線交直線lyx于點B1,以原點O為圓心,OB1的長為半徑畫弧交x軸正半軸于點A2,則點A2的坐標為_____;再過點A2x軸的垂線交直線l于點B2,以原點O為圓心,以OB2的長為半徑畫弧交x軸正半軸于點A3;.按此作法進行下去,則的長是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】投資1萬元圍一個矩形菜園(如圖),其中一邊靠墻,另外三邊選用不同材料建造.墻長24 m,平行于墻的邊的費用為200元/m,垂直于墻的邊的費用為150元/m,設平行于墻的邊長為x m.

(1)設垂直于墻的一邊長為y m,直接寫出y與x之間的函數關系式;

(2)若菜園面積為384 m2,求x的值;

(3)求菜園的最大面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知中,是邊上一點,DEBC于點,將沿翻折得到,若是直角三角形,則長為________.

查看答案和解析>>

同步練習冊答案