【題目】如圖①,直線分別與軸、軸交于點(diǎn),,拋物線經(jīng)過(guò),兩點(diǎn),且與軸的另一交點(diǎn)為.
(1)求拋物線的函數(shù)解析式;
(2)如圖①,點(diǎn)在第三象限內(nèi)的拋物線上.
①連接,,,當(dāng)四邊形的面積最大時(shí),求點(diǎn)的坐標(biāo);
②為軸上一點(diǎn),當(dāng)取得最小值時(shí),求點(diǎn)的坐標(biāo);
(3)如圖②,為軸下方拋物線上任意一點(diǎn),是拋物線的對(duì)稱軸與軸的交點(diǎn),直線,分別交拋物線的對(duì)稱軸于點(diǎn),.問(wèn):是否為定值?如果是,請(qǐng)求出這個(gè)定值;如果不是,請(qǐng)說(shuō)明理由.
【答案】(1)y=x2+2x-3;(2)①,②;(3)DM+DN是定值,定值為8.
【解析】
(1)由直線表達(dá)式求出點(diǎn)B、C的坐標(biāo),將A、B、C坐標(biāo)代入拋物線表達(dá)式,即可求解;
(2)①S四邊形ABPC=S△BPC+S△ABC=PFOB+ABOC= (-t2-3t)+6=(t+)2+,即可求解;②當(dāng)GJ=AG時(shí),PG+AG取得最小值,即可求解;
(3)利用,,得,,即,,即可求解.
解:(1)在y=-x-3中,令x=0,得y=-3;令y=0,得x=-3,
∴B(-3,0),C(0,-3).
設(shè)拋物線的函數(shù)解析式為y=a(x+3)(x-1),
將點(diǎn)C(0,-3)代入,得a=1,
∴拋物線的函數(shù)解析式為y=x2+2x-3;
(2)①如圖①,過(guò)點(diǎn)P作PE⊥x軸于點(diǎn)E,交BC于點(diǎn)F,設(shè)點(diǎn)P的坐標(biāo)為(t,t2+2t-3),則點(diǎn)F的坐標(biāo)為(t,-t-3),
∴PF=-t-3-(t2+2t-3)=-t2-3t,
∴S四邊形ABPC=S△BPC+S△ABC=PF·OB+AB·OC=(-t2-3t)+6=.
∵<0,
∴當(dāng)t=時(shí),S四邊形ABPC取得最大值,
∴此時(shí)點(diǎn)P的坐標(biāo)為;
②如圖②,作點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn),交x軸于點(diǎn)I,連接AP,,過(guò)點(diǎn)P作PJ⊥于點(diǎn)J,交x軸于點(diǎn)G.當(dāng)GJ=AG時(shí),PG+AG取得最小值,此時(shí)sin∠GAJ=,
∴tan∠GAJ=.
設(shè)點(diǎn)P的坐標(biāo)為(t,t2+2t-3),則PI=-t2-2t+3,AI=-t+1,
由對(duì)稱的性質(zhì),得∠PAI=∠GAJ,
∴tan∠PAI=,即,
解得t1=,t2=1(舍去),
∴此時(shí)點(diǎn)P的坐標(biāo)為;
(3)DM+DN是定值.
解法一:如圖③,過(guò)點(diǎn)Q作QH⊥x軸于點(diǎn)H.
∵ND⊥x軸,
∴QH∥ND,
∴,,
∴,.
設(shè)點(diǎn)Q的坐標(biāo)為(k,k2+2k-3),則HQ=-k2-2k+3,BH=3+k,AH=1-k.
∵D是拋物線的對(duì)稱軸與x軸的交點(diǎn),
∴AD=BD=2,
∴,,
∴DN=2-2k,DM=2k+6,
∴DM+DN=2k+6+2-2k=8,
∴DM+DN是定值,該定值為8.
解法二:∵拋物線y=x2+2x-3的對(duì)稱軸為x=-1,
∴D(-1,0),則xM=xN=-1.
設(shè)點(diǎn)Q的坐標(biāo)為(k,k2+2k-3),
設(shè)直線AQ的解析式為y=dx+e,則,解得,
∴直線AQ的解析式為y=(k+3)x-k-3,
當(dāng)x=-1時(shí),y=-2k-6,
∴DM=2k+6.
設(shè)直線BQ的解析式為y=mx+n,則,解得,
∴直線BQ的解析式為y=(k-1)x+3k-3,
當(dāng)x=-1時(shí),y=2k-2,
∴DN=-2k+2,
∴DM+DN=2k+6+(-2k+2)=8,
∴DM+DN是定值,該定值為8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】五張正面分別寫有數(shù)字:﹣3,﹣2,0,1,2的卡片,它們的背面完全相同,現(xiàn)將這五張卡片背面朝上洗勻.
(1)從中任意抽取一張卡片,則所抽卡片上數(shù)字的絕對(duì)值不小于1的概率是 ;
(2)先從中任意抽取一張卡片,以其正面數(shù)字作為m的值,然后再?gòu)氖S嗟目ㄆ须S機(jī)抽一張,以其正面的數(shù)字作為n的值,請(qǐng)用列表法或畫樹(shù)狀圖法,求點(diǎn)Q(m,n)在第四象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知拋物線與x軸相交于A、B兩點(diǎn)(A左B右),與y軸交于點(diǎn)C.其頂點(diǎn)為D.
(1)求點(diǎn)D的坐標(biāo)和直線BC對(duì)應(yīng)的一次函數(shù)關(guān)系式;
(2)若正方形PQMN的一邊PQ在線段AB上,另兩個(gè)頂點(diǎn)M、N分別在BC、AC上,試求M、N兩點(diǎn)的坐標(biāo);
(3)如圖1,E是線段BC上的動(dòng)點(diǎn),過(guò)點(diǎn)E作DE的垂線交BD于點(diǎn)F,求DF的最小值.
(圖1) (圖2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在信息快速發(fā)展的新時(shí)代,“信息消費(fèi)”已成為人們生活的重要部分.為了解某社區(qū)居民每月信息消費(fèi)的情況,學(xué)校社會(huì)實(shí)踐小組到該社區(qū)隨機(jī)調(diào)查了部分住戶2019年7月的信息消費(fèi)金額,并將手機(jī)到的數(shù)據(jù)整理成不完整統(tǒng)計(jì)圖(圖9.1、圖9.2).
請(qǐng)結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問(wèn)題.
(1)本次調(diào)查樣本的容量是______;
(2)D組的頻數(shù)是______,E組的頻率是______,B組所對(duì)應(yīng)扇形的圓心角為______度;
(3)在調(diào)查的住戶中,當(dāng)月信息消費(fèi)金額的中位數(shù)出現(xiàn)在______組;
(4)若該社區(qū)有1500戶住戶,估計(jì)當(dāng)月信息消費(fèi)額不少于300元的約有______戶.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年,新型冠狀病毒席卷全球,疫情當(dāng)前,全國(guó)上下砥礪同行.某中學(xué)校指導(dǎo)中心為引導(dǎo)未成年人以健康心理、陽(yáng)光心態(tài)抗擊疫情,積極開(kāi)展了心理援助工作,并推出“你是我的奧特曼”有獎(jiǎng)?wù)鞲寤顒?dòng).活動(dòng)結(jié)束后,該指導(dǎo)中心對(duì)參賽學(xué)生的獲獎(jiǎng)情況進(jìn)行統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
結(jié)合圖中的相關(guān)數(shù)據(jù),解答下列問(wèn)題:
(1)參加此次有獎(jiǎng)?wù)鞲寤顒?dòng)的學(xué)生有 人,在扇形統(tǒng)計(jì)圖中,“三等獎(jiǎng)”所對(duì)應(yīng)扇形的圓心角度數(shù)為 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若獲得“一等獎(jiǎng)”的學(xué)生中有來(lái)自七年級(jí),來(lái)自九年級(jí),其余來(lái)自八年級(jí),學(xué)校決定從獲得“一等獎(jiǎng)”的學(xué)生中任選2名作為代表在線上分享心靈戰(zhàn)“疫”小錦囊,請(qǐng)用列表或畫樹(shù)狀圖的方法求所選2名學(xué)生中恰好是1名七年級(jí)和1名九年級(jí)學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)種植A、B、C三種樹(shù)苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一種樹(shù)苗,且每名工人每天可植A種樹(shù)苗8棵;或植B種樹(shù)苗6棵,或植C種樹(shù)苗5棵.經(jīng)過(guò)統(tǒng)計(jì),在整個(gè)過(guò)程中,每棵樹(shù)苗的種植成本如圖所示.設(shè)種植A種樹(shù)苗的工人為x名,種植B種樹(shù)苗的工人為y名.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)設(shè)種植的總成本為w元,
①求w與x之間的函數(shù)關(guān)系式;
②若種植的總成本為5600元,從植樹(shù)工人中隨機(jī)采訪一名工人,求采訪到種植C種樹(shù)苗工人的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和小剛一起做游戲,游戲規(guī)則如下:將分別標(biāo)有數(shù)字 1, 2, 3, 4 的 4 個(gè)小球放入一個(gè)不透明的袋子中,這些球除數(shù)字外都相同.從中隨機(jī)摸出一個(gè)球記下數(shù)字后放回,再?gòu)闹须S機(jī)摸出一個(gè)球記下數(shù)字.若兩次數(shù)字差的絕對(duì)值小于 2,則小明獲勝,否則小剛獲勝.這個(gè)游戲?qū)扇斯絾??qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線y=x-1交x軸、y軸于A、B點(diǎn),點(diǎn)P(1,,且S四邊形PAOB=3.5,雙曲線y=經(jīng)過(guò)點(diǎn)P.
(1)求k的值;
(2)如圖2,直線)交射線BA于E,交雙曲線y=于F,將直線向右平移4個(gè)單位長(zhǎng)度后交射線于,交雙曲線y=于,若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AB⊥AC,DC⊥AC,∠B=∠D,,,,點(diǎn)E,F分別是BC,AD的中點(diǎn).
(1)求證:;
(2)當(dāng)與滿足什么數(shù)量關(guān)系時(shí),四邊形是正方形?請(qǐng)證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com