【題目】三個形狀大小相同的菱形按如圖所示方式擺放,已知∠AOB=∠AOE=90°,菱形的較短對角線長為2cm.若點C落在AH的延長線上,則△ABE的周長為________cm.
【答案】
【解析】
連接IC,連接CH交OI于K,則A,H,C在同一直線上,CI=2,根據(jù)△COH是等腰直角三角形,即可得到∠CKO=90°,即CK⊥IO,設(shè)CK=OK=x,則CO=IO=x,IK=xx,根據(jù)勾股定理即可得出x2=2+,再根據(jù)S菱形BCOI=IO×CK=IC×BO,即可得出BO=2+2,進(jìn)而得到△ABE的周長.
解:如圖所示,連接IC,連接CH交OI于K,則A,H,C在同一直線上,CI=2,
∵三個菱形全等,
∴CO=HO,∠AOH=∠BOC,
又∵∠AOB=∠AOH+∠BOH=90°,
∴∠COH=∠BOC+∠BOH=90°,
即△COH是等腰直角三角形,
∴∠HCO=∠CHO=45°=∠HOG=∠COK,
∴∠CKO=90°,即CK⊥IO,
設(shè)CK=OK=x,則CO=IO=x,IK=xx,
∵Rt△CIK中,(xx)2+x2=22,
解得x2=2+,
又∵S菱形BCOI=IO×CK=IC×BO,
∴x2=×2×BO,
∴BO=2+2,
∴BE=2BO=4+4,AB=AE=BO=4+2,
∴△ABE的周長=4+4+2(4+2)=12+8,
故答案為:12+8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC,∠ABC=90°,以直角邊AB為直徑作⊙O,交斜邊AC于點D,連接BD.
(1)若AD=3,BD=4,求邊BC的長;
(2)取BC的中點E,連接ED,試證明:ED與⊙O相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在⊙O上,CE AB于E, CD平分ECB, 交過點B的射線于D, 交AB于F, 且BC=BD.
(1)求證:BD是⊙O的切線;
(2)若AE=9, CE=12, 求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AC=2,BC=1,以斜邊為一邊向右上方作正方形ABDE,連接CD,則CD的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的對角線相交于點O,且點O是BD的中點,若AB=AD=5,BD=8,∠ABD=∠CDB,則四邊形ABCD的面積為( )
A.40B.24C.20D.15
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】再讀教材:
寬與長的比是 (約為0.618)的矩形叫做黃金矩形,黃金矩形給我們以協(xié)調(diào),勻稱的美感.世界各國許多著名的建筑.為取得最佳的視覺效果,都采用了黃金矩形的設(shè)計,下面我們用寬為2的矩形紙片折疊黃金矩形.(提示; MN=2)
第一步,在矩形紙片一端.利用圖①的方法折出一個正方形,然后把紙片展平.
第二步,如圖②.把這個正方形折成兩個相等的矩形,再把紙片展平.
第三步,折出內(nèi)側(cè)矩形的對角線 AB,并把 AB折到圖③中所示的AD處,
第四步,展平紙片,按照所得的點D折出 DE,使 DE⊥ND,則圖④中就會出現(xiàn)黃金矩形,
問題解決:
(1)圖③中AB=________(保留根號);
(2)如圖③,判斷四邊形 BADQ的形狀,并說明理由;
(3)請寫出圖④中所有的黃金矩形,并選擇其中一個說明理由.
(4)結(jié)合圖④.請在矩形 BCDE中添加一條線段,設(shè)計一個新的黃金矩形,用字母表示出來,并寫出它的長和寬.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對角線BD上一點,且EA=EC.
(1)求證:四邊形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求證:四邊形ABCD是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平行四邊形ABCD中,對角線AC與BD相交于點O,經(jīng)過點O的直線與邊AB相交于點E,與邊CD相交于點F.
(1)求證:OE=OF;
(2)如圖2,連接DE,BF,當(dāng)DE⊥AB時,在不添加其他輔助線的情況下,直接寫出腰長等于BD的所有的等腰三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com