在平行四邊形ABCD中,CE⊥AB,E為垂足,如果∠A=130°,則∠BCE=( )

A.30°
B.40°
C.50°
D.45°
【答案】分析:根據(jù)平行四邊形的性質(zhì)可知,平行四邊形對(duì)角相等,鄰角互補(bǔ),所以已知∠A可以求出∠B,再進(jìn)一步利用直角三角形的性質(zhì)求解即可.
解答:解:∵四邊形ABCD為平行四邊形,
∴AD∥BC,
∴∠B=180°-∠A=50°
又∵CE⊥AB,
∴∠BCE=90°-50°=40°.
故選B.
點(diǎn)評(píng):運(yùn)用平行四邊形的性質(zhì)常解決以下問(wèn)題,如求角的度數(shù)、線段的長(zhǎng)度,證明角相等或互補(bǔ),證明線段相等或倍分等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點(diǎn)E,∠ADC的平分線交AB于點(diǎn)F.試判斷AF與CE是否相等,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、已知如圖,在平行四邊形ABCD中,BN=DM,BE=DF.求證:四邊形MENF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•鞍山一模)在平行四邊形ABCD中,∠DAB=60°,點(diǎn)E是AD的中點(diǎn),點(diǎn)O是AB邊上一點(diǎn),且AO=AE,過(guò)點(diǎn)E作直線HF交DC于點(diǎn)H,交BA的延長(zhǎng)線于F,以O(shè)E所在直線為對(duì)稱軸,△FEO經(jīng)軸對(duì)稱變換后得到△F′EO,直線EF′交直線DC于點(diǎn)M.
(1)求證:AD∥OF′;
(2)若M點(diǎn)在點(diǎn)H右側(cè),OA=4,求DH•DM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平行四邊形ABCD中,AE⊥AD交BD于點(diǎn)E,CF⊥BC交BD于點(diǎn)F.求證:BE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平行四邊形ABCD中,∠B的平分線交AD于E,AE=10,ED=4,那么平行四邊形ABCD的周長(zhǎng)是
48
48

查看答案和解析>>

同步練習(xí)冊(cè)答案