【題目】嘉淇同學(xué)要證明命題“兩組對邊分別相等的四邊形是平行四邊形”是正確的,她先用尺規(guī)作出了如圖1的四邊形ABCD,并寫出了如下不完整的已知和求證.
已知:如圖1,在四邊形ABCD中,BC=AD,
求證:四邊形ABCD是四邊形.
(1)在方框中填空,以補(bǔ)全已知和求證;
(2)按嘉淇的想法寫出證明;
(3)用文字?jǐn)⑹鏊C命題的逆命題為平行四邊形兩組對邊分別相等
【答案】(1)
【解答】
已知:如圖1,在四邊形ABCD中,BC=AD,AB=CD
求證:四邊形ABCD是平行四邊形.
(2)
【解答】證明:連接BD,
在△ABD和△CDB中
∴△ABD≌△CDB(SSS),
∴∠ADB=∠DBC,∠ABD=∠CDB,
∴AB∥CD,AD∥CB,
∴四邊形ABCD是平行四邊形;
(3)【解答】用文字?jǐn)⑹鏊C命題的逆命題為:平行四邊形兩組對邊分別相等.
【解析】(1)命題的題設(shè)為“兩組對邊分別相等的四邊形”,結(jié)論是“是平行四邊形”,根據(jù)題設(shè)可得已知:在四邊形ABCD中,BC=AD,AB=CD,求證:四邊形ABCD是平行四邊形;(2)連接BD,利用SSS定理證明△ABD≌△CDB可得∠ADB=∠DBC,∠ABD=∠CDB,進(jìn)而可得AB∥CD,AD∥CB,根據(jù)兩組對邊分別平行的四邊形是平行四邊形可得四邊形ABCD是平行四邊形;(3)把命題“兩組對邊分別相等的四邊形是平行四邊形”的題設(shè)和結(jié)論對換可得平行四邊形兩組對邊分別相等.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列語句是命題的個數(shù)( )
(1)延長線段AB,(2)兩條直線相交,只有一交點,(3)畫線段AB的中點,(4)若|x|=2,則x=2,(5)角平分線是一條射線.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)習(xí)小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如下的表格,則符合這一結(jié)果的實驗最有可能的是( )
實驗次數(shù) | 100 | 200 | 300 | 500 | 800 | 1000 | 2000 |
頻率 | 0.365 | 0.328 | 0.330 | 0.334 | 0.336 | 0.332 | 0.333 |
A.一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃
B.在“石頭、剪刀、布”的游戲中,小明隨機(jī)出的是“剪刀”
C.拋一個質(zhì)地均勻的正六面體骰子,向上的面點數(shù)是5
D.拋一枚硬幣,出現(xiàn)反面的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自由轉(zhuǎn)動如圖所示的轉(zhuǎn)盤.下列事件中哪些是必然事件?那些是隨機(jī)事件?根據(jù)你的經(jīng)驗,將這些事件的序號按發(fā)生的可能性從小到大的順序排列.
(1)轉(zhuǎn)盤停止后指針指向1;
(2)轉(zhuǎn)盤停止后指針指向10;
(3)轉(zhuǎn)盤停止后指針指向的是偶數(shù);
(4)轉(zhuǎn)盤停止后指針指向的不是奇數(shù)就是偶數(shù);
(5)轉(zhuǎn)盤停止后指針指向的數(shù)大于1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD及等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,連接DF.
(1)試說明AC=EF;
(2)求證:四邊形ADFE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在正方形ABCD中,G是CD上一點,延長BC到E,使CE=CG,連接BG并延長交DE于F.
(1)求證:△BCG≌△DCE;
(2)將△DCE繞點D順時針旋轉(zhuǎn)90°得到△DAE′,判斷四邊形E′BGD是什么特殊四邊形,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋內(nèi)裝有50個大小材質(zhì)相同且編號不同的小球,它們按照從1到50依次編號,將袋中的小球攪勻,然后從中隨意取出一個小球,請問
(1)取出的小球編號是偶數(shù)的概率是多少?
(2)取出的小球編號是3的倍數(shù)的概率是多少?
(3)取出的小球編號是質(zhì)數(shù)的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD的邊長為1,點P為正方形內(nèi)一動點,若點M在AB上,且滿足△PBC∽△PAM,延長BP交AD于點N,連結(jié)CM.
(1)如圖一,若點M在線段AB上,求證:AP⊥BN;AM=AN;
(2)①如圖二,在點P運動過程中,滿足△PBC∽△PAM的點M在AB的延長線上時,AP⊥BN和AM=AN是否成立?
②是否存在滿足條件的點P,使得PC=?(不需說明理由).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com