【題目】如圖,已知,A(0,4),B(﹣3,0),C(2,0),D為B點關(guān)于AC的對稱點,反比例函數(shù)y= 的圖象經(jīng)過D點.
(1)證明四邊形ABCD為菱形;
(2)求此反比例函數(shù)的解析式;
(3)已知在y=的圖象(x>0)上一點N,y軸正半軸上一點M,且四邊形ABMN是平行四邊形,求M點的坐標.
【答案】(1)證明見解析;(2)反比例函數(shù)的解析式為;(3)M點的坐標為.
【解析】試題分析:(1)由A(0,4),B(-3,0),C(2,0),利用勾股定理可求得AB=5=BC,又由D為B點關(guān)于AC的對稱點,可得AB=AD,BC=DC,即可證得AB=AD=CD=CB,繼而證得四邊形ABCD為菱形;
(2)由四邊形ABCD為菱形,可求得點D的坐標,然后利用待定系數(shù)法,即可求得此反比例函數(shù)的解析式;
(3)由四邊形ABMN是平行四邊形,根據(jù)平移的性質(zhì),可求得點N的橫坐標,代入反比例函數(shù)解析式,即可求得點N的坐標,繼而求得M點的坐標.
試題解析:(1)∵A(O,4),B(-3,0),C(2,0),
∴OA=4,OB=3 ,OC=2,
∴,BC=5,
∴AB=BC.
∵D為B點關(guān)于AC的對稱點,
∴AB=AD,CB=CD,
∴AB=AD=CD=CB.
∴四邊形ABCD為菱形.
(2)∵四邊形ABCD為菱形,
∴D點的坐標為(5,4),反比例函數(shù)的圖象經(jīng)過D點,
∴,
∴k=20,
∴反比例函數(shù)的解析式為.
(3)∵四邊形ABMN是平行四邊形,
∴AN∥BM,AN=BM,
∴AN是BM經(jīng)過平移得到的.
∴首先BM向右平移了3個單位長度,
∴N點的橫坐標為3,代入,得,
∴M點的縱坐標為,
∴M點的坐標為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個兩位數(shù)M的個位數(shù)字母是a,十位數(shù)字母是b,交換這個兩位數(shù)的個位與十位上的數(shù)字的位置,所得的新數(shù)記為N,則2M﹣N=(用含a和b的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】陳明同學(xué)準備在課外活動時間組織部分同學(xué)參加電腦網(wǎng)絡(luò)培訓(xùn),按原定的人數(shù)估計共需費用300元,后因人數(shù)增加到原定人數(shù)的2倍,享受優(yōu)惠后,一共只需480元,參加活動的每個同學(xué)平均分攤的費用比原計劃少4元,求原定的人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1的解析表達式為:y=﹣3x+3,且l1與x軸交于點D,直線l2經(jīng)過點A,B,直線l1 , l2交于點C.
(1)求點D的坐標;
(2)求直線l2的解析表達式;
(3)求△ADC的面積;
(4)在直線l2上存在異于點C的另一點P,使得△ADP與△ADC的面積相等,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=4,∠BAD的平分線與BC的延長線交于點E,與DC交于點F,且點F為邊DC的中點,DG⊥AE,垂足為G,若DG=1,則AE的邊長為( )
A.2
B.4
C.4
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸為x=﹣1,且過點(﹣3,0).下列說法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是拋物線上兩點,則y1>y2.
其中說法正確的是( )
A. ①② B. ②③ C. ①②④ D. ②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com