【題目】已知:如圖,在△ABC中,,以為直徑的⊙O交于點,,垂足為,的延長線與的延長線交于點

1)求證:是⊙O的切線.

2)若⊙O的半徑為4,,求的長.

【答案】1)證明見解析;(2DE=.

【解析】

1)如圖,連接OD,由DEAB可得∠AED=90°,根據(jù)等腰三角形的性質(zhì)可得∠B=ACB,∠ODC=ACB,根據(jù)等量代換可得∠B=ODC,可證明OD//AB,可得∠AEF=ODF=90°,即可證明DE是⊙O的切線;(2)根據(jù)含30°角的直角三角形的性質(zhì)可求出OF的長,即可求出AF的長,根據(jù)含30°角的直角三角形的性質(zhì)可求出AE的長,利用勾股定理可求出DFEF的長,進而可求出DE的長.

如圖,連接OD

DEAB,

∴∠AEF=90°,

AB=AC

∴∠B=ACB,

OD=OC

∴∠ODC=ACB,

∴∠B=ODC,

OD//AB,

∴∠ODF=AEF=90°,

OD是⊙O的半徑,

DE是⊙O的切線.

2)∵∠F=30°,OD=4,ODEF

OF=2OD=8,

AF=OF+OA=8+4=12,DF==,

AE=AF=6,EF==,

DE=EF-DF=-=.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在噴水池的中心A處豎直安裝一個水管AB,水管的頂端安有一個噴水池,使噴出的拋物線形水柱在與池中心A的水平距離為1m處達到最高點,高度為3m,水柱落地點D離池中心A3m,以水平方向為軸,建立平面直角坐標系,若選取點為坐標原點時的拋物線的表達式為,則選取點為坐標原點時的拋物線表達式為______,水管的長為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圓O的半徑為1,六邊形ABCDEF是圓O的內(nèi)接正六邊形,從A,BC,D,E,F六點中任意取兩點,并連接成線段.

求線段長為2的概率;

求線段長為的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x+3分別交 x軸、y軸于點A、C.P是該直線與雙曲線在第一象限內(nèi)的一個交點,PBx軸于B,SABP=16.

(1)求證:AOC∽△ABP;

2)求點P的坐標;

3)設(shè)點Q與點P在同一個反比例函數(shù)的圖象上,且點Q在直線PB的右側(cè),QDx軸于D,BQDAOC相似時,求點Q的橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種商品的日銷售量y(件)與銷售價x(元)之間的關(guān)系如下表,且日銷售量y與銷售價x之間滿足一次函數(shù)關(guān)系.

x(元)

130

150

165

y(件)

70

50

35

1)求yx之間的函數(shù)關(guān)系式

2)若該商品的進價是每件120元,商家將每件商品的銷售價定為160元時,則每日銷售的總利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校計劃組織全校1441名師生到相關(guān)部門規(guī)劃的林區(qū)植樹,經(jīng)過研究,決定租用當?shù)刈廛嚬疽还?/span>62兩種型號客車作為交通工具.

下表是租車公司提供給學校有關(guān)兩種型號客車的載客量和租金信息:

型號

載客量

租金單價

30人/輛

380元/輛

20人/輛

280元/輛

注:載客量指的是每輛客車最多可載該校師生的人數(shù).設(shè)學校租用型號客車輛,租車總費用為.

1)求的函數(shù)解析式,請直接寫出的取值范圍;

2)若要使租車總費用不超過21940元,一共有幾種租車方案?哪種租車方案總費用最?最省的總費用是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AN是M的直徑,NBx軸,AB交M于點C.

(1)若點A(0,6),N(0,2),ABN=30°,求點B的坐標;

(2)若D為線段NB的中點,求證:直線CD是M的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,∠ACB=90°OC=2OB,tanABC=2,點B的坐標為(1,0).拋物線y=x2+bx+c經(jīng)過AB兩點.

1)求拋物線的解析式;

2)點P是直線AB上方拋物線上的一點,過點PPD垂直x軸于點D,交線段AB于點E,使PE最大.

①求點P的坐標和PE的最大值.

②在直線PD上是否存在點M,使點M在以AB為直徑的圓上;若存在,求出點M的坐標,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案