【題目】已知:在中,C、D分別為BM、AM上的點(diǎn),四邊形ABCD內(nèi)接于,連接AC,;
如圖,求證:弧弧BD;
如圖,若AB為直徑,,求值;
如圖,在的條件下,E為弧CD上一點(diǎn)不與C、D重合,F為AB上一點(diǎn),連接EF交AC于點(diǎn)N,連接DN、DE,若,,,求AN的長(zhǎng).
【答案】(1)詳見(jiàn)解析;(2)(3)
【解析】
證明弧弧BD可以轉(zhuǎn)化證明
是直徑可知三角形ABD是等腰直角三角形,從而得出,利用的特殊性構(gòu)造直角三角形DCG,結(jié)合,可以求出,進(jìn)而求出
為了求AN,可以過(guò)點(diǎn)N作于點(diǎn)M,求出MN,AM,即可求出因?yàn)?/span>P是BD的中點(diǎn),所以連結(jié)OP,根據(jù)垂徑定理可以得出,根據(jù)可得,從而得到矩形OPLH,結(jié)合矩形的性質(zhì),可以得出OH,EH的長(zhǎng)度關(guān)系,在利用勾股定理建立方程,可求出HO,進(jìn)而求出MN,AM,最終得出AN的長(zhǎng)度.
,
,
又
,
弧弧BD
作于點(diǎn)G,連結(jié)如圖
為直徑
弧弧
,
又
,
又
,
連結(jié)BD交AC,EF分別為點(diǎn)P,點(diǎn)L,連結(jié)OP,OE,PE,再作于點(diǎn)H,于點(diǎn)如圖3所示
,,
,
由得
,
即P為BD的中點(diǎn)
,
四邊形OPLH為矩形
設(shè),則.
又
垂直平分NE
,
又為等腰直角三角形
,
解得
,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)都在反比例函數(shù)的圖象上.
(1)求的值;
(2)如果為軸上一點(diǎn),為軸上一點(diǎn),以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,試求直線的函數(shù)表達(dá)式;
(3)將線段沿直線進(jìn)行對(duì)折得到線段,且點(diǎn)始終在直線上,當(dāng)線段與軸有交點(diǎn)時(shí),則的取值范圍為_(kāi)______(直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知A(2,0)、B(3,1)、C(1,3).
(1)將△ABC沿x軸負(fù)方向移動(dòng)2個(gè)單位長(zhǎng)度至△A1B1C1,畫(huà)圖并寫(xiě)出點(diǎn)C1的坐標(biāo);
(2)以點(diǎn)A1為旋轉(zhuǎn)中心,將△A1B1C1逆時(shí)針?lè)较蛐D(zhuǎn)90°得到△A2B2C2,畫(huà)圖并寫(xiě)出點(diǎn)C2的坐標(biāo);
(3)以B、C1、C2為頂點(diǎn)的三角形是 三角形,其外接圓的半徑R= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為滿足市場(chǎng)需求,某超市在五月初五“端午節(jié)”來(lái)臨前夕,購(gòu)進(jìn)一種品牌粽子,每盒進(jìn)價(jià)是40元.超市規(guī)定每盒售價(jià)不得少于45元.根據(jù)以往銷(xiāo)售經(jīng)驗(yàn)發(fā)現(xiàn);當(dāng)售價(jià)定為每盒45元時(shí),每天可以賣(mài)出700盒,每盒售價(jià)每提高1元,每天要少賣(mài)出20盒.
(1)試求出每天的銷(xiāo)售量y(盒)與每盒售價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)每盒售價(jià)定為多少元時(shí),每天銷(xiāo)售的利潤(rùn)P(元)最大?最大利潤(rùn)是多少?
(3)為穩(wěn)定物價(jià),有關(guān)管理部門(mén)限定:這種粽子的每盒售價(jià)不得高于58元.如果超市想要每天獲得不低于6000元的利潤(rùn),那么超市每天至少銷(xiāo)售粽子多少盒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為滿足市場(chǎng)需求,某超市在五月初五“端午節(jié)”來(lái)臨前夕,購(gòu)進(jìn)一種品牌粽子,每盒進(jìn)價(jià)是40元.超市規(guī)定每盒售價(jià)不得少于45元.根據(jù)以往銷(xiāo)售經(jīng)驗(yàn)發(fā)現(xiàn);當(dāng)售價(jià)定為每盒45元時(shí),每天可以賣(mài)出700盒,每盒售價(jià)每提高1元,每天要少賣(mài)出20盒.
(1)試求出每天的銷(xiāo)售量y(盒)與每盒售價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)每盒售價(jià)定為多少元時(shí),每天銷(xiāo)售的利潤(rùn)P(元)最大?最大利潤(rùn)是多少?
(3)為穩(wěn)定物價(jià),有關(guān)管理部門(mén)限定:這種粽子的每盒售價(jià)不得高于58元.如果超市想要每天獲得不低于6000元的利潤(rùn),那么超市每天至少銷(xiāo)售粽子多少盒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)(a、b、c是常數(shù),a≠0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對(duì)稱(chēng)軸是x=1.對(duì)于下列說(shuō)法:①當(dāng)時(shí),;②;③;④3a+c>0,其中正確的是( )
A. ①③B. ①④C. ②③D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(6分)某海域有A,B兩個(gè)港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船從A港口出發(fā),沿東北方向行駛一段距離后,到達(dá)位于B港口南偏東75°方向的C處,求該船與B港口之間的距離即CB的長(zhǎng)(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:二次函數(shù)y=ax2+bx+c的圖象如圖所示,下列結(jié)論中:
①abc<0;②b2﹣4ac>0;③3a+c<0;④(a+c)2<b2,⑤a+b+c>0
其中正確的序號(hào)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,,點(diǎn)E、F分別是BC、AD的中點(diǎn).
(1)求證:≌;
(2)當(dāng)時(shí),求四邊形AECF的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com