【題目】如圖,在△ABC中,∠C=90°,AC=BC=6.點(diǎn)P在邊AC上運(yùn)動(dòng),過(guò)點(diǎn)P作PD⊥AB于點(diǎn)D,以AP、AD為鄰邊作PADE.設(shè)□PADE與△ABC重疊部分圖形的面積為y,線段AP的長(zhǎng)為x(0<x≤6).
(1)求線段PE的長(zhǎng)(用含x的代數(shù)式表示).
(2)當(dāng)點(diǎn)E落在邊BC上時(shí),求x的值.
(3)求y與x之間的函數(shù)關(guān)系式.
(4)直接寫出點(diǎn)E到△ABC任意兩邊所在直線距離相等時(shí)x的值.
【答案】(1)PE=AD=x;(2)4;(3)①y=x2;②y=﹣x2+9x﹣18;(4)3,6,
【解析】
(1)∵在△ABC中,∠C=90°,AC=BC,
∴∠A=45°,
∵PD⊥AB,
∴AD=APcos∠A=x=PD,
∵四邊形PADE是平行四邊形,
∴PE=AD=x;
(2)當(dāng)點(diǎn)E落在邊BC上時(shí),如圖1.
∵PE∥AD,
∴∠CPE=∠A=45°,
∵∠C=90°,
∴PC=PEcos∠CPE=x=x.
∵AP+PC=AC,
∴x+x=6,
∴x=4;
(3)①當(dāng)0<x≤4時(shí),如圖2.
y=SPADE=ADPD=xx=x2,即y=x2;
②當(dāng)4<x≤6時(shí),如圖3,設(shè)DE與BC交于G,PE與BC交于F.
∵AD=x,AB=AC=6,
∴DB=AB﹣AD=6﹣x,
∴DG=DBsin∠B=(6﹣x)=6﹣x,
∴GE=DE﹣DG=x﹣(6﹣x)=x﹣6,
∴y=SPADE﹣S△GFE=x2﹣(x﹣6)2=﹣x2+9x﹣18;
(4)①當(dāng)E在△ABC內(nèi)部時(shí),0<x<4,如圖4,過(guò)E作EL⊥AC于L,EM⊥AB于M,延長(zhǎng)DE交BC于N,則EN⊥BC.
EL=PEsin∠LPE=x=x,
EM=DEsin∠EDM=x=x,
EN=DN﹣DE=DBsin∠B﹣AP=(6﹣x)﹣x=6﹣x﹣x=6﹣x.
∵0<x<4,
∴x≠x,即EL≠EM.
當(dāng)EL=EN時(shí),E在∠ACB的平分線上,
有x=6﹣x,解得x=3,符合題意;
當(dāng)EM=EN時(shí),E在∠ABC的平分線上,
有x=6﹣x,解得x=,符合題意;
②當(dāng)E在△ABC外部時(shí),4<x≤6,過(guò)E作EL⊥AC交AC延長(zhǎng)線于L,EM⊥AB于M,易知EG⊥BC.
EL=GC=ADsin∠A=x=x,
EM=DEsin∠EDM=x=x,
EG=DE﹣DG=AP﹣DBsin∠B=x﹣(6﹣x)=x﹣(6﹣x)=x﹣6.
∵4<x≤6,
∴x≠x,即EL≠EM.
當(dāng)EL=EG時(shí),E在∠ACB的外角的角平分線上,
有x=x﹣6,解得x=6,符合題意;
當(dāng)EM=EG時(shí),E在∠ABC的外角的角平分線上,
有x=x﹣6,解得x=>6,不合題意舍去.
綜上所述,點(diǎn)E到△ABC任意兩邊所在直線距離相等時(shí)x的值為3,6,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,BD平分∠ABC,AD垂直于BD,△BCD的面積為45,△ADC的面積為20,則△ABD的面積為( ).
A.20B.18C.16D.25
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度數(shù).
(2)上題中若∠B=40°,∠C=80°改為∠C>∠B,其他條件不變,請(qǐng)你求出∠EAD與∠B、∠C之間的數(shù)列關(guān)系?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+4x+c(a≠0)經(jīng)過(guò)點(diǎn)A(3,﹣4)和B(0,2).
(1)求拋物線的表達(dá)式和頂點(diǎn)坐標(biāo);
(2)將拋物線在A、B之間的部分記為圖象M(含A、B兩點(diǎn)).將圖象M沿直線x=3翻折,得到圖象N.若過(guò)點(diǎn)C(9,4)的直線y=kx+b與圖象M、圖象N都相交,且只有兩個(gè)交點(diǎn),求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過(guò)點(diǎn)B(6,0)的直線AB與直線OA相交于點(diǎn)A(4,2),動(dòng)點(diǎn)N沿路線O→A→C運(yùn)動(dòng).
(1)求直線AB的解析式.
(2)求△OAC的面積.
(3)當(dāng)△ONC的面積是△OAC面積的時(shí),求出這時(shí)點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷售甲、乙兩種品牌的智能手機(jī),這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如下表所示:
甲 | 乙 | |
進(jìn)價(jià)(元/部) | 4000 | 2500 |
售價(jià)(元/部) | 4300 | 3000 |
該商場(chǎng)計(jì)劃購(gòu)進(jìn)兩種手機(jī)若干部,共需15.5萬(wàn)元,預(yù)計(jì)全部銷售后可獲毛利潤(rùn)共2.1萬(wàn)元.
(毛利潤(rùn)=(售價(jià)﹣進(jìn)價(jià))×銷售量)
(1)該商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種手機(jī)各多少部?
(2)通過(guò)市場(chǎng)調(diào)研,該商場(chǎng)決定在原計(jì)劃的基礎(chǔ)上,減少甲種手機(jī)的購(gòu)進(jìn)數(shù)量,增加乙種手機(jī)的購(gòu)進(jìn)數(shù)量.已知乙種手機(jī)增加的數(shù)量是甲種手機(jī)減少的數(shù)量的2倍,而且用于購(gòu)進(jìn)這兩種手機(jī)的總資金不超過(guò)16萬(wàn)元,該商場(chǎng)怎樣進(jìn)貨,使全部銷售后獲得的毛利潤(rùn)最大?并求出最大毛利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,垂直平分,分別交、于點(diǎn)、,垂直平分,分別交,于點(diǎn)、.
⑴如圖①,若,求的度數(shù);
⑵如圖②,若,求的度數(shù);
⑶若,直接寫出用表示大小的代數(shù)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線與交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4,過(guò)原點(diǎn)O的另一條直線l交雙曲線于P,Q兩點(diǎn)(點(diǎn)P在第一象限),由點(diǎn)A,B,P,Q為頂點(diǎn)組成的四邊形面積為24,則點(diǎn)P的坐標(biāo)為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某加工企業(yè)生產(chǎn)并銷售某種農(nóng)產(chǎn)品,假設(shè)銷售量與加工產(chǎn)量相等.已知每千克生產(chǎn)成本y1(單位:元)與產(chǎn)量x(單位:kg)之間滿足表達(dá)式y1=下圖中線段AB表示每千克銷售價(jià)格y2(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)表達(dá)式.
(1)試確定每千克銷售價(jià)格y2與產(chǎn)量x之間的函數(shù)表達(dá)式,并寫出自變量的取值范圍;
(2)若用w(單位:元)表示銷售該農(nóng)產(chǎn)品的利潤(rùn),試確定w與產(chǎn)量x之間的函數(shù)表達(dá)式;
(3)求銷售量為70 kg時(shí),銷售該農(nóng)產(chǎn)品是賺錢,還是虧本?賺錢或虧本了多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com