已知二次函數(shù)y=ax2+bx+c的部分圖象如圖所示,那么下列判斷不正確的是(  )

A.ac<0

B.a-b+c>0

C.b=-4a

D.關(guān)于x的方程ax2+bx+c=0根是x1=-1,x2=5

 

【答案】

B.

【解析】

試題分析:由拋物線的開(kāi)口方向判斷a的符號(hào),由拋物線與y軸的交點(diǎn)判斷c的符號(hào),然后根據(jù)拋物線與x軸交點(diǎn)及x=1時(shí)二次函數(shù)的值的情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷:

A、該二次函數(shù)開(kāi)口向下,則a<0;拋物線交y軸于正半軸,則c>0;所以ac<0,正確.

B、由于拋物線過(guò)(-1,0),則有:a-b+c =0,錯(cuò)誤.

C、由圖象知:拋物線的對(duì)稱(chēng)軸為,即b=-4a,正確.

D、拋物線與x軸的交點(diǎn)為(-1,0)、(5,0);故方程ax2+bx+c=0的根是x1=-1,x2=5,正確.

故選B.

考點(diǎn):1.二次函數(shù)圖象與系數(shù)的關(guān)系;2.拋物線與x軸的交點(diǎn).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:101網(wǎng)校同步練習(xí) 初三數(shù)學(xué) 華東師大(新課標(biāo)2001/3年初審) 華東師大版 題型:013

已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則函數(shù)y=ax+b的圖象只可能是選項(xiàng)中的

[  ]

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年貴州黔東南州中考數(shù)學(xué)試卷 題型:044

已知二次函數(shù)y=x2+ax+a-2.

(1)求證:不論a為何實(shí)數(shù),此函數(shù)圖象與x軸總有兩個(gè)交點(diǎn).

(2)設(shè)a<0,當(dāng)此函數(shù)圖象與x軸的兩個(gè)交點(diǎn)的距離為時(shí),求出此二次函數(shù)的解析式.

(3)若此二次函數(shù)圖象與x軸交于A、B兩點(diǎn),在函數(shù)圖象上是否存在點(diǎn)P,使得△PAB的面積為,若存在求出P點(diǎn)坐標(biāo),若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)yx2+ax+a-2.

(1)求證:不論a為何實(shí)數(shù),此函數(shù)圖象與x軸總有兩個(gè)交點(diǎn).

(2)設(shè)a<0,當(dāng)此函數(shù)圖象與x軸的兩個(gè)交點(diǎn)A、B的距離為時(shí),求出此二次函數(shù)的解析式.

(3)若(2)中的條件不變,在函數(shù)圖象上是否存在點(diǎn)P,使得△PAB的面積為,若存在求出P點(diǎn)坐標(biāo),若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)yx2+ax+a-2.

(1)求證:不論a為何實(shí)數(shù),此函數(shù)圖象與x軸總有兩個(gè)交點(diǎn).

(2)設(shè)a<0,當(dāng)此函數(shù)圖象與x軸的兩個(gè)交點(diǎn)A、B的距離為時(shí),求出此二次函數(shù)的解析式.

(3)若(2)中的條件不變,在函數(shù)圖象上是否存在點(diǎn)P,使得△PAB的面積為,若存在求出P點(diǎn)坐標(biāo),若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年北京四中初三第一學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:填空題

已知二次函數(shù)y=ax 2+bx+c圖象的一部分如圖,則a的取值范圍是____    __.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案