(2007•湖州)在8×8的正方形網(wǎng)格中建立如圖所示的平面直角坐標系,已知A(2,4),B(4,2).C是第一象限內的一個格點,由點C與線段AB組成一個以AB為底,且腰長為無理數(shù)的等腰三角形.
(1)填空:C點的坐標是______,△ABC的面積是______;
(2)將△ABC繞點C旋轉180°得到△A1B1C1,連接AB1、BA1,試判斷四邊形AB1A1B是何種特殊四邊形,請說明理由;
(3)請?zhí)骄浚涸趚軸上是否存在這樣的點P,使四邊形ABOP的面積等于△ABC面積的2倍?若存在,請直接寫出點P的坐標(不必寫出解答過程);若不存在,請說明理由.

【答案】分析:(1)此點應在AB的垂直平分線上,在第一象限,腰長又是無理數(shù),只有是點(1,1),從A,B向x軸引垂線,把所求的三角形的面積分為一個直角三角形和一個直角梯形的面積減去一個直角三角形的面積.
(2)旋轉180°后可得新四邊形的對角線互相平分,那么先判斷是平行四邊形,然后根據(jù)等腰三角形的性質得到對角線相等,那么所求的四邊形是矩形.
(3)根據(jù)平行四邊形的性質,結合(1)中的方法解答.
解答:解:(1)(1,1),4;

(2)四邊形AB1A1B是矩形.
∵AC=A1C,BC=B1C,AC=BC
∴AA1=BB1
∴四邊形AB1A1B是矩形

(3)∵S△ABC=S梯形ABDE+S矩形BDCF-(S△AEC+S△BCF)=×(1+3)×2+3×1-×1×3-×1×3=4,
∴四邊形ABOP的面積等于8.
同(1)中的方法得到三點A,B,O構成的面積為6.當P在O左邊時,△APO的面積應為2,高為4,那么底邊長為1,所以P(-1,0);
當P在O右邊時,△BOP的面積應為2,高為2,所以底邊長為2,此時P坐標為(2,0).
故點P的坐標為(2,0),(-1,0).
點評:到一條線段兩個端點距離相等的點在這條線段的垂直平分線上.對角線互相平分且相等的四邊形是平行四邊形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《概率》(06)(解析版) 題型:解答題

(2007•湖州)在一個布口袋中裝有只有顏色不同,其它都相同的白、紅、黑三種顏色的小球各1只,甲乙兩人進行摸球游戲;甲先從袋中摸出一球看清顏色后放回,再由乙從袋中摸出一球.
(1)試用樹狀圖(或列表法)表示摸球游戲所有可能的結果;
(2)如果規(guī)定:乙摸到與甲相同顏色的球為乙勝,否則為負,試求乙在游戲中能獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《圖形的旋轉》(03)(解析版) 題型:填空題

(2007•湖州)在平面直角坐標系中,已知P1的坐標為(1,0),將其繞著原點按逆時針方向旋轉30°得到點P2,延長OP2到點P3,使OP3=2OP2,再將點P3繞著原點按逆時針方向旋轉30°得到P4,延長OP4到點P5,使OP5=2OP4,如此繼續(xù)下去,則點P2010的坐標是   

查看答案和解析>>

科目:初中數(shù)學 來源:2007年浙江省湖州市中考數(shù)學試卷(解析版) 題型:解答題

(2007•湖州)在8×8的正方形網(wǎng)格中建立如圖所示的平面直角坐標系,已知A(2,4),B(4,2).C是第一象限內的一個格點,由點C與線段AB組成一個以AB為底,且腰長為無理數(shù)的等腰三角形.
(1)填空:C點的坐標是______,△ABC的面積是______;
(2)將△ABC繞點C旋轉180°得到△A1B1C1,連接AB1、BA1,試判斷四邊形AB1A1B是何種特殊四邊形,請說明理由;
(3)請?zhí)骄浚涸趚軸上是否存在這樣的點P,使四邊形ABOP的面積等于△ABC面積的2倍?若存在,請直接寫出點P的坐標(不必寫出解答過程);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年浙江省湖州市中考數(shù)學試卷(解析版) 題型:解答題

(2007•湖州)在一個布口袋中裝有只有顏色不同,其它都相同的白、紅、黑三種顏色的小球各1只,甲乙兩人進行摸球游戲;甲先從袋中摸出一球看清顏色后放回,再由乙從袋中摸出一球.
(1)試用樹狀圖(或列表法)表示摸球游戲所有可能的結果;
(2)如果規(guī)定:乙摸到與甲相同顏色的球為乙勝,否則為負,試求乙在游戲中能獲勝的概率.

查看答案和解析>>

同步練習冊答案