在平面直角坐標系xOy中,對于任意兩點P1(x1,y1)與P2(x2,y2)的“非常距離”,給出如下定義:

若|x1﹣x2|≥|y1﹣y2|,則點P1與點P2的“非常距離”為|x1﹣x2|;

若|x1﹣x2|<|y1﹣y2|,則點P1與點P2的“非常距離”為|y1﹣y2|.

例如:點P1(1,2),點P2(3,5),因為|1﹣3|<|2﹣5|,所以點P1與點P2的“非常距離”為|2﹣5|=3,也就是圖1中線段P1Q與線段P2Q長度的較大值(點Q為垂直于y軸的直線P1Q與垂直于x軸的直線P2Q交點).

(1)已知點A(﹣,0),B為y軸上的一個動點,

①若點A與點B的“非常距離”為2,寫出一個滿足條件的點B的坐標;

②直接寫出點A與點B的“非常距離”的最小值;

(2)已知C是直線y=x+3上的一個動點,

①如圖2,點D的坐標是(0,1),求點C與點D的“非常距離”的最小值及相應的點C的坐標;

②如圖3,E是以原點O為圓心,1為半徑的圓上的一個動點,求點C與點E的“非常距離”的最小值及相應的點E與點C的坐標.

 

解:(1)①∵B為y軸上的一個動點,

∴設點B的坐標為(0,y).

∵|﹣﹣0|=≠2,

∴|0﹣y|=2,

解得,y=2或y=﹣2;

∴點B的坐標是(0,2)或(0,﹣2);

②點A與點B的“非常距離”的最小值為

(2)①如圖2,取點C與點D的“非常距離”的最小值時,需要根據(jù)運算定義“若|x1﹣x2|≥|y1﹣y2|,則點P1與點P2的“非常距離”為|x1﹣x2|”解答,此時|x1﹣x2|=|y1﹣y2|.即AC=AD,

∵C是直線y=x+3上的一個動點,點D的坐標是(0,1),

∴設點C的坐標為(x0,x0+3),

∴﹣x0=x0+2,

此時,x0=﹣,

∴點C與點D的“非常距離”的最小值為:|x0|=

此時C(﹣,);

②當點E在過原點且與直線y=x+3垂直的直線上時,點C與點E的“非常距離”最小,設E(x,y)(點E位于第二象限).則

,

解得,,

故E(﹣).

﹣x0=x0+3﹣,

解得,x0=﹣,

則點C的坐標為(﹣,),

最小值為1.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

13、在平面直角坐標系xOy中,已知點A(2,-2),在y軸上確定點P,使△AOP為等腰三角形,則符合條件的有
4
個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知拋物線y=ax2+bx+c的對稱軸是x=1,并且經過(-2,-5)和(5,-12)兩點.
(1)求此拋物線的解析式;
(2)設此拋物線與x軸交于A、B兩點(點A在點B的左側),與y軸交于C 點,D是線段BC上一點(不與點B、C重合),若以B、O、D為頂點的三角形與△BAC相似,求點D的坐標;
(3)點P在y軸上,點M在此拋物線上,若要使以點P、M、A、B為頂點的四邊形是平行四邊形,請你直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在平面直角坐標系xOy中,△ABC的A、B兩個頂點在x軸上,頂點C在y軸的負半軸上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面積S△ABC=15,拋物線y=ax2+bx+c(a≠0)經過A、B、C三點.
(1)求此拋物線的函數(shù)表達式;
(2)設E是y軸右側拋物線上異于點B的一個動點,過點E作x軸的平行線交拋物線于另一點F,過點F作FG垂直于x軸于點G,再過點E作EH垂直于x軸于點H,得到矩形EFGH.則在點E的運動過程中,當矩形EFGH為正方形時,求出該正方形的邊長;
(3)在拋物線上是否存在異于B、C的點M,使△MBC中BC邊上的高為7
2
?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知A(2,-2),B(0,-2),在坐標平面中確定點P,使△AOP與△AOB相似,則符合條件的點P共有
5
5
個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系xOy中,A(2,1)、B(4,1)、C(1,3).與△ABC與△ABD全等,則點D坐標為
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步練習冊答案