【題目】如圖,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE與AC交于點M,EF與AC交于點N,動點P從點A出發(fā)沿AB以每秒1個單位長的速度向點B勻速運動,伴隨點P的運動,矩形PEFG在射線AB上滑動;動點K從點P出發(fā)沿折線PE﹣﹣EF以每秒1個單位長的速度勻速運動.點P、K同時開始運動,當點K到達點F時停止運動,點P也隨之停止.設點P、K運動的時間是t秒(t>0).
(1)當t=1時,KE=_____,EN=_____;
(2)當t為何值時,△APM的面積與△MNE的面積相等?
(3)當點K到達點N時,求出t的值;
(4)當t為何值時,△PKB是直角三角形?
【答案】 (1)1, ;(2) ;(3) ; (4)當0<t≤2或t=3或t=4或5時,△PKB是直角三角形.
【解析】試題分析:
(1)利用△APM∽△ABC求出PM,然后求出ME,再利用△APM∽△NEM,就可以求出EN.
(2)△APM的面積與△MNE的面積相等,且兩個三角形相似,所以,只有兩三角形全等面積就相等,表示出三角形的面積,從而求出t值.
(3)(1)已經求出EN的值,根據(jù)EN+PE=AP的值,解出t即可.
(4)是直角三角形有兩種情況,K在PE邊上任意一點時△PKB是直角三角形,在FE上的一點時也是直角三角形.利用三角形相似求出t的值.
試題解析:
(1)當t=1時,根據(jù)題意得,AP=1,PK=1,
∵PE=2,
∴KE=2﹣1=1,
∵四邊形ABCD和PEFG都是矩形,
∴△APM∽△ABC,△APM∽△NEM,
∴=, =,
∴MP=,ME=,
∴NE=;
故答案為:1;;
(2)由(1)并結合題意可得,
AP=t,PM=t,ME=2﹣t,NE=﹣t,
∴t×t=(2﹣t)×(﹣t),
解得,t=;
(3)當點K到達點N時,則PE+NE=AP,
由(2)得,﹣t+2=t,
解得,t=;
(4)①當K在PE邊上任意一點時△PKB是直角三角形,
即,0<t≤2;
②當點k在EF上時,
則KE=t﹣2,BP=8﹣t,
∵△BPK∽△PKE,
∴PK2=BP×KE,PK2=PE2+KE2,
∴4+(t﹣2)2=(8﹣t)(t﹣2),
解得t=3,t=4;
③當t=5時,點K在BC邊上,∠KBP=90°.
綜上,當0<t≤2或t=3或t=4或5時,△PKB是直角三角形.
科目:初中數(shù)學 來源: 題型:
【題目】某校為了創(chuàng)建書香校園,去年又購進了一批圖書.經了解,科普書的單價比文學書的單價多4元,用1200元購進的科普書與用800元購進的文學書本數(shù)相等.
(1)求去年購進的文學羽和科普書的單價各是多少元?
(2)若今年文學書和科普書的單價和去年相比保持不變,該校打算用1000元再購進一批文學書和科普書,問購進文學書55本后至多還能購進多少本科普書?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB⊥BC,DC⊥BC,E是BC上一點,使得AE⊥DE;
(1)求證:△ABE∽△ECD;
(2)若AB=4,AE=BC=5,求CD的長;
(3)當△AED∽△ECD時,請寫出線段AD、AB、CD之間數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BD,CE分別是AC,AB邊上的高,BD, CE交于O,則圖中共有相似三角形( )
A. 5對 B. 6對 C. 7對 D. 8對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB邊上的中點,點D、E分別在AC、BC邊上運動,且保持AD=CE.連接DE、DF、EF.在此運動變化的過程中,下列結論:①△DFE是等腰直角三角形;②DE長度的最小值為4;③四邊形CDFE的面積保持不變;④△CDE面積的最大值為8.其中正確的結論是( 。
A.①②③B.①③C.①③④D.②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠BAC=30°,E為AB邊的中點,以BE為邊作等邊△BDE,連接AD,CD.
(1)求證:△ADE≌△CDB;
(2)若BC=1,在AC邊上找一點H,使得BH+EH最小,并求出這個最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀與思考:利用多項式的乘法法則,可以得到,反過來,則有利用這個式子可以將某些二次項系數(shù)是1的二次三項式分解因式。例如:將式子分解因式.這個式子的常數(shù)項,一次項系數(shù),所以.
解:.
上述分解因式的過程,也可以用十字相乘的形式形象地表示:先分解二次項系數(shù),分別寫在十字交叉線的左上角和左下角;再分解常數(shù)項,分別寫在十字交叉線的右上角和右下角;然后交叉相乘,求代數(shù)和,使其等于一次項系數(shù)(如圖).
請仿照上面的方法,解答下列問題:
(1)分解因式:;
(2)分解因式:;
(3)若可分解為兩個一次因式的積,寫出整數(shù)P的所有可能值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一扇窗戶垂直打開,即OM⊥OP,AC是長度不變的滑動支架,其中一端固定在窗戶的點A處,另一端在OP上滑動,將窗戶OM按圖示方向內旋轉35°到達ON位置,此時點A,C的對應位置分別是點B,D,測量出∠ODB=25°,點D到點O的距離為30cm,求滑動支架BD的長.
(結果精確到1cm,參考數(shù)據(jù):sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】九年級三班學生蘇琪為幫助同桌萬宇鞏固“平面直角坐標系四個象限內及坐標軸上的點的坐標特點”這一基礎知識,在三張完全相同且不透明的卡片正面分別寫上了﹣3,0,2三個數(shù)字,背面向上洗勻后隨機抽取一張,將卡片上的數(shù)字記為a,再從剩下的兩張中隨機取出一張,將卡片上的數(shù)字記為b,然后叫萬宇在平面直角坐標系中找出點M(a,b)的位置.
(1)請你用樹狀圖幫萬宇同學進行分析,并寫出點M所有可能的坐標;
(2)求點M在第二象限的概率;
(3)張老師在萬宇同學所畫的平面直角坐標系中,畫了一個半徑為3的⊙O,過點M能作多少條⊙O的切線?請直接寫出答案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com