【題目】如圖,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE與AC交于點M,EF與AC交于點N,動點P從點A出發(fā)沿AB以每秒1個單位長的速度向點B勻速運動,伴隨點P的運動,矩形PEFG在射線AB上滑動;動點K從點P出發(fā)沿折線PE﹣﹣EF以每秒1個單位長的速度勻速運動.點P、K同時開始運動,當點K到達點F時停止運動,點P也隨之停止.設點P、K運動的時間是t秒(t>0).

(1)當t=1時,KE=_____,EN=_____;

(2)當t為何值時,△APM的面積與△MNE的面積相等?

(3)當點K到達點N時,求出t的值;

(4)當t為何值時,△PKB是直角三角形?

【答案】 (1)1, ;(2) ;(3) (4)當0<t≤2或t=3或t=4或5時,△PKB是直角三角形.

【解析】試題分析:

(1)利用△APM∽△ABC求出PM,然后求出ME,再利用△APM∽△NEM,就可以求出EN.

(2)△APM的面積與△MNE的面積相等,且兩個三角形相似,所以,只有兩三角形全等面積就相等,表示出三角形的面積,從而求出t值.

(3)(1)已經求出EN的值,根據(jù)EN+PE=AP的值,解出t即可.

(4)是直角三角形有兩種情況,K在PE邊上任意一點時△PKB是直角三角形,在FE上的一點時也是直角三角形.利用三角形相似求出t的值.

試題解析:

(1)當t=1時,根據(jù)題意得,AP=1,PK=1,

∵PE=2,

∴KE=2﹣1=1,

∵四邊形ABCD和PEFG都是矩形,

∴△APM∽△ABC,△APM∽△NEM,

=, =,

∴MP=,ME=,

∴NE=

故答案為:1;;

(2)由(1)并結合題意可得,

AP=t,PM=t,ME=2﹣t,NE=﹣t,

t=(2﹣t)×(﹣t),

解得,t=;

(3)當點K到達點N時,則PE+NE=AP,

由(2)得,﹣t+2=t,

解得,t=;

(4)①當K在PE邊上任意一點時△PKB是直角三角形,

即,0<t≤2;

②當點k在EF上時,

則KE=t﹣2,BP=8﹣t,

∵△BPK∽△PKE,

∴PK2=BP×KE,PK2=PE2+KE2,

∴4+(t﹣2)2=(8﹣t)(t﹣2),

解得t=3,t=4;

③當t=5時,點K在BC邊上,∠KBP=90°.

綜上,當0<t≤2或t=3或t=4或5時,△PKB是直角三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校為了創(chuàng)建書香校園,去年又購進了一批圖書.經了解,科普書的單價比文學書的單價多4元,用1200元購進的科普書與用800元購進的文學書本數(shù)相等.

1)求去年購進的文學羽和科普書的單價各是多少元?

2)若今年文學書和科普書的單價和去年相比保持不變,該校打算用1000元再購進一批文學書和科普書,問購進文學書55本后至多還能購進多少本科普書?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊥BC,DC⊥BC,EBC上一點,使得AE⊥DE;

(1)求證:△ABE∽△ECD;

(2)AB=4,AE=BC=5,求CD的長;

(3)△AED∽△ECD時,請寫出線段AD、AB、CD之間數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,BD,CE分別是AC,AB邊上的高,BD, CE交于O,則圖中共有相似三角形(  )

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰RtABC中,∠C90°AC8,FAB邊上的中點,點D、E分別在ACBC邊上運動,且保持ADCE.連接DEDF、EF.在此運動變化的過程中,下列結論:①DFE是等腰直角三角形;②DE長度的最小值為4;③四邊形CDFE的面積保持不變;④CDE面積的最大值為8.其中正確的結論是( 。

A.①②③B.①③C.①③④D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠BAC30°,EAB邊的中點,以BE為邊作等邊BDE,連接AD,CD

1)求證:ADE≌△CDB

2)若BC1,在AC邊上找一點H,使得BH+EH最小,并求出這個最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀與思考:利用多項式的乘法法則,可以得到,反過來,則有利用這個式子可以將某些二次項系數(shù)是1的二次三項式分解因式。例如:將式子分解因式.這個式子的常數(shù)項,一次項系數(shù),所以

解:

上述分解因式的過程,也可以用十字相乘的形式形象地表示:先分解二次項系數(shù),分別寫在十字交叉線的左上角和左下角;再分解常數(shù)項,分別寫在十字交叉線的右上角和右下角;然后交叉相乘,求代數(shù)和,使其等于一次項系數(shù)(如圖).

請仿照上面的方法,解答下列問題:

1)分解因式:;

2)分解因式:

3)若可分解為兩個一次因式的積,寫出整數(shù)P的所有可能值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一扇窗戶垂直打開,即OM⊥OP,AC是長度不變的滑動支架,其中一端固定在窗戶的點A處,另一端在OP上滑動,將窗戶OM按圖示方向內旋轉35°到達ON位置,此時點A,C的對應位置分別是點B,D,測量出∠ODB=25°,點D到點O的距離為30cm,求滑動支架BD的長.

(結果精確到1cm,參考數(shù)據(jù):sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九年級三班學生蘇琪為幫助同桌萬宇鞏固平面直角坐標系四個象限內及坐標軸上的點的坐標特點這一基礎知識,在三張完全相同且不透明的卡片正面分別寫上了﹣3,0,2三個數(shù)字,背面向上洗勻后隨機抽取一張,將卡片上的數(shù)字記為a,再從剩下的兩張中隨機取出一張,將卡片上的數(shù)字記為b,然后叫萬宇在平面直角坐標系中找出點Ma,b)的位置.

1)請你用樹狀圖幫萬宇同學進行分析,并寫出點M所有可能的坐標;

2)求點M在第二象限的概率;

3)張老師在萬宇同學所畫的平面直角坐標系中,畫了一個半徑為3⊙O,過點M能作多少條⊙O的切線?請直接寫出答案.

查看答案和解析>>

同步練習冊答案