如圖,在△ABC中,D為AB上一點,⊙O經(jīng)過B、C、D三點,∠COD=90°,∠ACD=∠BCO+∠BDO.
(1)求證:直線AC是⊙O的切線;
(2)若∠BCO=15°,⊙O的半徑為2,求BD的長.

【答案】分析:(1)連接OB,首先根據(jù)同弧所對的圓周角等于它所對圓心角度數(shù)的一半求出∠CBD,即為∠OBC+∠OBD的度數(shù),然后根據(jù)等邊對等角分別得到∠OBC=∠BCO,∠OBD=∠BDO兩對角的相等,等量代換可得到∠BCO+∠BDO的度數(shù),由已知的∠ACD=∠BCO+∠BDO,即可求出∠ACD=45°,再由△OCD為等腰直角三角形可求出∠OCD=45°,從而得到∠OCA=90°,利用經(jīng)過直徑的一端,并且垂直于這條直徑的直線是圓的切線可得證;
(2)由(1)中的∠BCO+∠BDD=45°,且∠BCO=15°,求出∠BDO=30°,然后在直角三角形ODE中,根據(jù)半徑的長及∠BDO的度數(shù),利用30°的余弦值即可求出DE的長,最后根據(jù)垂徑定理可得BD=2DE求出結(jié)果.
解答:(1)證明:連接OB.
∵∠COD=90°,且∠COD與∠CBD是分別所對的圓心角和圓周角,
∴∠CBD=∠COD=45°,
∵OB=OC,OB=OD,
∴∠OBC=∠BCO,∠OBD=∠BDO,
∵∠CBD=∠OBC+∠OBD=45°,(3分)
∴∠BCO+∠BDO=45°,
∵∠ACD=∠BCO+∠BDO,
∴∠ACD=45°,(5分)
在Rt△COD中,OC=OD,
∴∠OCD=45°,
∴∠OCA=90°,
∴直線AC是⊙O的切線;(6分)

(2)解:過O作OE⊥BD,垂足為E.
∴BD=2DE,
∵∠BCO+∠BDO=45°,∠BCO=15°,
∴∠BDO=30°,
在Rt△DOE中,
DE=OD•cos30°=2×=
∴BD=2DE=2.(10分)
點評:此題考查了切線的判定,圓周角定理,等腰三角形的性質(zhì),垂徑定理,以及銳角三角函數(shù)的定義,是一道多知識的綜合題,要求學生把所學的知識融匯貫穿,靈活運用,注意利用轉(zhuǎn)化的數(shù)學思想.其中證明切線的方法一般有以下兩種:①有點連接證明半徑(或直徑)與所證的直線垂直;②無點作垂線,證明圓心到直線的距離等于半徑.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案