(2004•黃岡)如圖1,已知AB是⊙O的直徑,AB垂直于弦CD,垂足為M,弦AE與CD交于F,則有結論AD2=AE•AF成立(不要求證明).
(1)若將弦CD向下平移至與O相切B點時,如圖2,則AEAF是否等于AG2?如果不相等,請?zhí)角驛E•AF等于哪兩條線段的積并給出證明;
(2)當CD繼續(xù)向下平移至與O相離時,如圖3,在(1)中探求的結論是否還成立?并說明理由.

【答案】分析:(1)利用切線的性質(zhì)和直徑所對的圓周角是直角可以得到角的關系證明△FAH∽△GAE,然后利用相似三角形的性質(zhì)證明題目結論;
(2)利用直徑所對的圓周角是直角,和已知條件可以得到角的關系證明△FAH∽△GAE,然后利用相似三角形的性質(zhì)就可以證明題目的結論.
解答:解:(1)∵AE,AF不等于AG2
∴AE•AF=AG•AH
連接BG,EG
∵AB是⊙O的直徑,CD是⊙O的切線
∴∠ABF=∠AGB=90°
∴∠BAF+∠BFA=90°
∴∠AGE+∠BGE=90°
∴∠BAF+∠BFA=∠AGE+∠BGE
∵∠BAF=∠BGE
∴∠AFH=∠AGE
又∵∠FAH=∠GAE
∴△FAH∽△GAE
,即AE•AF=AG•AH;

(2)(1)中探求的結論還成立.
證明:連接EG,BG
∵AB是⊙O的直徑,AM⊥CD
∴∠AMF=∠AGB=90°
∴∠AFM+∠FAM=∠AGE+∠BGE=90°
∵∠FAM=∠BGE
∴∠AFM=∠AGE
又∵∠AFH=∠GAE
∴△FAH∽△GAE

∴AE•AF=AG•AH.
點評:此題利用了切線的性質(zhì),直徑所對的圓周角是直角,弦切角定理,相似三角形的性質(zhì)與判定,綜合性比較強.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《反比例函數(shù)》(03)(解析版) 題型:解答題

(2004•黃岡)如圖,Rt△ABO的頂點A是雙曲線y=與直線y=-x-(k+1)在第二象限的交點.AB⊥x軸于B,且S△ABO=
(1)求這兩個函數(shù)的解析式;
(2)求直線與雙曲線的兩個交點A、C的坐標和△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《反比例函數(shù)》(04)(解析版) 題型:解答題

(2004•黃岡)如圖,Rt△ABO的頂點A是雙曲線y=與直線y=-x-(k+1)在第二象限的交點.AB⊥x軸于B,且S△ABO=
(1)求這兩個函數(shù)的解析式;
(2)求直線與雙曲線的兩個交點A、C的坐標和△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年貴州省六盤水市盤縣響水中學中考數(shù)學模擬密卷(四)(解析版) 題型:解答題

(2004•黃岡)如圖,Rt△ABO的頂點A是雙曲線y=與直線y=-x-(k+1)在第二象限的交點.AB⊥x軸于B,且S△ABO=
(1)求這兩個函數(shù)的解析式;
(2)求直線與雙曲線的兩個交點A、C的坐標和△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年湖北省黃岡市中考數(shù)學試卷(解析版) 題型:解答題

(2004•黃岡)如圖,Rt△ABO的頂點A是雙曲線y=與直線y=-x-(k+1)在第二象限的交點.AB⊥x軸于B,且S△ABO=
(1)求這兩個函數(shù)的解析式;
(2)求直線與雙曲線的兩個交點A、C的坐標和△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年四川省中考數(shù)學試卷(解析版) 題型:解答題

(2004•黃岡)如圖,Rt△ABO的頂點A是雙曲線y=與直線y=-x-(k+1)在第二象限的交點.AB⊥x軸于B,且S△ABO=
(1)求這兩個函數(shù)的解析式;
(2)求直線與雙曲線的兩個交點A、C的坐標和△AOC的面積.

查看答案和解析>>

同步練習冊答案