【題目】如圖,在菱形ABCD中,E、F分別是AB、BC邊的中點,EP⊥CD于點P,∠BAD=110°,則∠FPC的度數(shù)是( 。
A. 35° B. 45° C. 50° D. 55°
【答案】D
【解析】
延長PF、EB交于點G;連接EF,根據(jù)菱形的性質(zhì)易證△BGF≌△CPF,根據(jù)全等三角形的性質(zhì)可得PF=GF,即可得點F為PG的中點,又因∠GEP=90°,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得FP=FG=FE,所以∠FPC=∠FGB=∠GEF;連接AC,即可得∠GEF=∠BAC=∠BAD=55°,所以∠FPC的度數(shù)是55°.
延長PF、EB交于點G;連接EF,
∵四邊形ABCD是菱形,
∴AG∥DC,
∴∠GBF=∠PCF,
∵F是BC中點,
∴BF=CF,
在△BGF和△CPF中, ,
∴△BGF≌△CPF,
∴PF=GF,
∴點F為PG的中點,
∵∠GEP=90°,
∴FP=FG=FE,
∴∠FPC=∠FGB=∠GEF,
連接AC,
則∠GEF=∠BAC=∠BAD=55°,
∴∠FPC的度數(shù)是55°.
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,點P在邊AB上,沿著PC折疊紙片使B點落在邊AD上的E點處,過點E作EF∥AB交PC于F,連接BF.
(1)求證:四邊形BFEP為菱形;
(2)若tan∠BCP=,AB=3cm,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,它與軸的兩個交點分別為,.對于下列命題:①;②;③;④.其中正確的有( )
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在菱形ABCD中,記∠ABC=∠α(0°<∠α<90°),菱形的面積記作S,菱形的周長記作C,若AD=2,則( 。
A. C與∠α的大小有關
B. 當∠α=45°時,S=
C. A,B,C,D四個點可以在同一個圓上
D. S隨∠α的增大而增大
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在△ABC中,∠A=90°,AB=6,AC=8,點P在邊AC上,且⊙P與AB,BC都相切.
(1)求⊙P半徑;
(2)求sin∠PBC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為,連接AC、BD交于點O,CE平分∠ACD交BD于點E,
(1)求DE的長;
(2)過點EF作EF⊥CE,交AB于點F,求BF的長;
(3)過點E作EG⊥CE,交CD于點G,求DG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC中,∠CAB=90°,AC=AB=3,△CDE中,∠CDE=90°,CD=DE=5,連接BE,取BE中點F,連接AF、DF.
(1)如圖1,若C、B、E三點共線,H為BC中點.
①直接指出AF與DF的關系 ;
②直接指出FH的長度 ;
(2)將圖(1)中的△CDE繞C點逆時針旋轉(zhuǎn)a(如圖2,0°<α<180°),試確定AF與DF的關系,并說明理由;
(3)在(2)中,若AF=,請直接指出點F所經(jīng)歷的路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是某市2009年4月5日至14日每天最低氣溫的折線統(tǒng)計圖.
(1)圖2是該市2007年4月5日至14日每天最低氣溫的頻數(shù)分布直方圖,根據(jù)圖1提供的信息,補全圖2中頻數(shù)分布直方圖;
(2)在這10天中,最低氣溫的眾數(shù)是____,中位數(shù)是____,方差是_____.
(3)請用扇形圖表示出這十天里溫度的分布情況.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE.
(1)求證:BD=CE;
(2)若點M,N分別是BD,CE的中點,如圖2,連接AM,AN,MN,若AC=6,AE=4,∠EAC=60°,求AN的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com