【題目】在平面直角坐標系中,拋物線的表達式為,線段AB的兩個端點分別為A(1,2),B(3,2)
(1)若拋物線經(jīng)過原點,求出的值;
(2)求拋物線頂點C的坐標(用含有m的代數(shù)式表示);
(3)若拋物線與線段AB恰有一個公共點,結(jié)合函數(shù)圖象,求出m的取值范圍.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線: 與軸、軸分別交于點B、C,經(jīng)過B、C兩點的拋物線與軸的另一個交點為A.
(1)求該拋物線的解析式;
(2)若點P在直線下方的拋物線上,過點P作PD∥軸交于點D,PE∥軸交于點E,
求PD+PE的最大值;
(3)設F為直線上的點,以A、B、P、F為頂點的四邊形能否構成平行四邊形?若能,求出點F的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】海南建省30年來,各項事業(yè)取得令人矚目的成就,以2016年為例,全省社會固定資產(chǎn)總投資約3730億元,其中包括中央項目、省屬項目、地(市)屬項目、縣(市)屬項目和其他項目.圖1、圖2分別是這五個項目的投資額不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請完成下列問題:
(1)在圖1中,先計算地(市)屬項目投資額為多少億元,然后將條形統(tǒng)計圖補充完整;
(2)在圖2中,縣(市)屬項目部分所占百分比為m%、對應的圓心角為β,求m的值,β等于多少度(m、β均取整數(shù)).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,在正方形ABCD中,AD=4,E,F(xiàn)分別是CD,BC上的一點,且∠EAF=45°,EC=1,將△ADE繞點A沿順時針方向旋轉(zhuǎn)90°后與△ABG重合,連接EF,過點B作BM∥AG,交AF于點M,則以下結(jié)論:①DE+BF=EF,②BF=,③AF=,④S△MEF=中正確的是
A. ①②③ B. ②③④ C. ①③④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下表顯示的是某種大豆在相同條件下的發(fā)芽試驗結(jié)果:
每批粒數(shù)n | 100 | 300 | 400 | 600 | 1000 | 2000 | 3000 |
發(fā)芽的粒數(shù)m | 96 | 282 | 382 | 570 | 948 | 1904 | 2850 |
發(fā)芽的頻率 | 0.960 | 0.940 | 0.955 | 0.950 | 0.948 | 0.952 | 0.950 |
下面有三個推斷:
①當n為400時,發(fā)芽的大豆粒數(shù)為382,發(fā)芽的頻率為0.955,所以大豆發(fā)芽的概率是0.955;
②隨著試驗時大豆的粒數(shù)的增加,大豆發(fā)芽的頻率總在0.95附近擺動,顯示出一定的穩(wěn)定性,可以估計大豆發(fā)芽的概率是0.95;
③若大豆粒數(shù)n為4000,估計大豆發(fā)芽的粒數(shù)大約為3800粒.
其中推斷合理的是( 。
A. ①②③ B. ①② C. ①③ D. ②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC三個頂點的坐標分別是A(﹣3,1),B(﹣1,﹣1),C(2,2).
(1)畫出△ABC關于y軸對稱的△A1B1C1,并寫出點A1,B1,C1的坐標;
(2)畫出△ABC繞點B逆時針旋轉(zhuǎn)90°所得到的△A2B2C2,并求出S.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:點A、C分別是∠B的兩條邊上的點,點D、E分別是直線BA、BC上的點,直線AE、CD相交于點P.
(1)點D、E分別在線段BA、BC上;
①若∠B=60°(如圖1),且AD=BE,BD=CE,則∠APD的度數(shù)為 ;
②若∠B=90°(如圖2),且AD=BC,BD=CE,求∠APD的度數(shù);
(2)如圖3,點D、E分別在線段AB、BC的延長線上,若∠B=90°,AD=BC,∠APD=45°,求證:BD=CE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,C、D是⊙O上的點,且OC∥BD, AD分別與BC,OC相交于點E,F(xiàn),則下列結(jié)論:①AD⊥BD; ②∠AOC=∠AEC; ③CB平分∠ABD;④AF=DF; ⑤BD=2OF; ⑥△CEF ≌△BED,其中一定成立的是( )
A. ① ③ ⑤ ⑥ B. ① ③ ④ ⑤
C. ② ④ ⑤ ⑥ D. ② ③ ④ ⑥
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=-x+4的圖象與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象交于A(1,a),B兩點.
(1)求反比例函數(shù)的表達式及點B的坐標;
(2)結(jié)合圖象直接寫出不等式-x+4>的解集
(3)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標及△PAB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com