【題目】2020春節(jié)期間,為了進一步做好新型冠狀病毒感染的肺炎疫情防控工作,防止新型肺炎外傳,切斷傳播途徑.項城市市區(qū)各入口一些主要路段均設(shè)立了檢測點,對出入人員進行登記和體溫檢測。下圖為一關(guān)口的警示牌,已知立桿AB高度是3m,從側(cè)面D點測得顯示牌頂端C點和底端B點的仰角分別是60°45°.求警示牌BC的高度.

【答案】

【解析】

RtADB中,由∠BDA=45°,AB=3可得出DA=3,在RtADC中,由特殊角的正切值即可得出線段CA的長度,再利用線段間的關(guān)系即可得出結(jié)論.

∵在RtADB,BDA=45°,AB=3,

DA=3

RtADC,CDA=60°,

tan60°=,

CA=DAtan60°=,

BC=CABA= ()

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,可以由繞點順時針旋轉(zhuǎn)90°得到(點與點是對應(yīng)點,點與點是對應(yīng)點),連接,則的度數(shù)是________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點CA、MN在同一條直線l上.其中,是等腰直角三角形,,四邊形為正方形,且,將等腰沿直線l向右平移.若起始位置為點A與點M重合,終止位置為點C與點N重合.設(shè)點A平移的距離為x,兩個圖形重疊部分的面積為y,則yx的函數(shù)圖象大致為(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校組織學生參加“新冠肺炎”防疫知識競賽,從中抽取了部分學生成績進行統(tǒng)計,并按照成績從低到高分成AB,C,D,E五個小組,繪制統(tǒng)計圖如表(未完成),解答下列問題:

1)樣本容量為  ,頻數(shù)分布直方圖中a 

2)扇形統(tǒng)計圖中E小組所對應(yīng)的扇形圓心角為n°,求n的值并補全頻數(shù)分布直方圖;

3)若成績在80分以上(不含80分)為優(yōu)秀,全校共有3000名學生,估計成績優(yōu)秀的學生有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新華商場銷售某種冰箱,每臺進貨價為2500元.市場調(diào)研表明:當銷售價為2900元時,平均每天能售出8臺;而當銷售價每降低50元時,平均每天就能多售出4臺.商場要想使這種冰箱的銷售利潤平均每天達到5000元,設(shè)每臺冰箱的定價為x元,則x滿足的關(guān)系式為(

A. (x2500)(8+4×)=5000 B. (2900x2500)(8+4×)=5000

C. (x2500)(8+4×)=5000 D. (2900x)(8+4×)=5000

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在蓮花山滑雪場滑雪,需從山腳下乘纜車上山,纜車索道與水平線所成的角為 32°,纜車速度為每分鐘 50 米,從山腳下A 到達山頂 B 纜車需要 16 分鐘,則山的高度 BC 約為 ____米.(結(jié)果精確到 0.1 米,參考數(shù)據(jù):sin32°0.5299 cos32°0.8480,tan32°0.6249

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在△ABC 中,CDAB 于點 D,ADCD2BD4,點 E 是線段BD 的中點,點 P 從點 A 出發(fā),沿折線 ACCB 向終點 B 運動,點 P 在邊 AC 上的速度為每秒個單位長度,PBC邊上的速度為個單位長度,設(shè)P的運動時間為 t()

(1)用含 t 的代數(shù)式表示點 P 到直線 AB 的距離.

(2)如圖②,作點 P 關(guān)于直線 CD 的對稱點 Q,設(shè)以 D、EQ、P 為頂點的四邊形的面積為 S(平方單位),求 S t 之間的函數(shù)關(guān)系式.

(3)當點 P 在邊 BC 上時,在△BCD 的邊上(不包括頂點)存在點 H,使四邊形 DEPH為軸對稱圖形,直接寫出此時線段 CP 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點A(﹣1,0),B(4,0),C(0,2)三點,點D與點C關(guān)于x軸對稱,點Px軸上的一個動點,設(shè)點P的坐標為(m,0),過點Px軸的垂線l交拋物線于點Q,交直線BD于點M.

(1)求該拋物線所表示的二次函數(shù)的表達式;

(2)已知點F(0,),當點Px軸上運動時,試求m為何值時,四邊形DMQF是平行四邊形?

(3)點P在線段AB運動過程中,是否存在點Q,使得以點B、Q、M為頂點的三角形與△BOD相似?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,對折矩形紙片ABCD,使ABDC重合得到折痕EF,將紙片展平,再一次折疊,使點D落到EF上點G處,并使折痕經(jīng)過點A,已知BC2,則線段EG的長度為________

查看答案和解析>>

同步練習冊答案