【題目】一元二次方程(x-3)(x-5)=0的兩根分別為( )

A.3 , 5B.3,-5C.3 , 5D.3 ,5

【答案】D

【解析】

由(x-3)(x-5=0得,兩個一元一次方程,從而得出x的值.

∵(x-3)(x-5=0

x-3=0x-5=0,

解得x1=3,x2=5

故選D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,正方形ABCD內(nèi)部有若干個點,用這些點以及正方形ABCD的頂點A、B、C、D可以把原正方形分割成一些互相不重疊三角形.

(1)填寫下表

(2)原正方形能否被分割成2016個三角形?若能,求此時正方形ABCD內(nèi)部有多少個點?若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各數(shù)中,比-2小的數(shù)是( )

A. 2 B. 0 C. -1 D. -3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在8×8網(wǎng)格紙中,每個小正方形的邊長都為1.

(1)已知點A在第四象限,且到x軸距離為1,到y(tǒng)軸距離為5,求點A的坐標;

(2)在(1)的條件下,已知點B(a+1,﹣2a+10),且點B在第一、三象限的角平分線上,判斷OAB的形狀.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某食品加工廠需要一批食品包裝盒,供應(yīng)這種包裝盒有兩種方案可供選擇:

方案一:從包裝盒加工廠直接購買,購買所需的費y1與包裝盒數(shù)x滿足如圖1所示的函數(shù)關(guān)系.

方案二:租賃機器自己加工,所需費用y2(包括租賃機器的費用和生產(chǎn)包裝盒的費用)與包裝盒數(shù)x滿足如圖2所示的函數(shù)關(guān)系.根據(jù)圖象回答下列問題:

(1)方案一中每個包裝盒的價格是多少元?

(2)方案二中租賃機器的費用是多少元?生產(chǎn)一個包裝盒的費用是多少元?

(3)請分別求出y1、y2與x的函數(shù)關(guān)系式.

(4)如果你是決策者,你認為應(yīng)該選擇哪種方案更省錢?并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后按圖的形狀拼成一個正方形

(1)圖中的陰影部分的正方形邊長為

(2)觀察圖,三個代數(shù)式之間的等量關(guān)系是

(3)觀察圖,你能得到怎樣的代數(shù)恒等式呢?;

(4)試畫出一個幾何圖形,使它的面積能表示.(畫在虛線框內(nèi))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)下列表格的對應(yīng)值,判斷ax2+bx+c=0 a≠0,ab,c為常數(shù))的一個解x的取值范圍是_____

x

3.23

3.24

3.25

3.26

ax2+bx+c

﹣0.06

﹣0.02

0.03

0.09

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:如圖(一),ABC的周長,內(nèi)切圓O的半徑為r,連結(jié)OA、OB、OC,ABC被劃分為三個小三角形,用SABC表示ABC的面積

SABC=SOAB+SOBC+SOCA

SOAB=,SOBC=,SOCA =

SABC=++= (可作為三角形內(nèi)切圓半徑公式)

(1)理解與應(yīng)用:利用公式計算邊長分為5、12、13的三角形內(nèi)切圓半徑;

(2)類比與推理:若四邊形ABCD存在內(nèi)切圓(與邊都切的圓,如圖(二))且積為S,邊長分別為a、b、c、d,試推導四邊形的內(nèi)圓半徑公式;

(3)展與延伸:若一個n邊形(n為不小于3的整數(shù))存在內(nèi)切,且積為S,各邊長分別為a1、a2、a3、…、an,合理猜想其內(nèi)切半徑公式(不需說明理由).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)軸上一點 A,一只螞蟻從 A 出發(fā)爬了 4 個單位長度到了原點,則點 A 所表 示的數(shù)是(

A. 4 B. ﹣4 C. ±8 D. ±4

查看答案和解析>>

同步練習冊答案