如圖,在平面直角坐標系中,將一塊腰長為的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標軸上,直角頂點C的坐標為(,0),點B在拋物線上.

(1)點A的坐標為             ,點B的坐標為             ;

(2)拋物線的解析式為             ;

(3)設(2)中拋物線的頂點為D,求△DBC的面積;

(4)在拋物線上是否還存在點P(點B除外),使ΔACP仍然是以AC為直角邊的等腰直角三角形?若存在,請直接寫出所有點P的坐標;若不存在,請說明理由。

 

【答案】

(1)A(0,2), B,1).

(2)

(3)15/8

(4)存在,

點P的坐標為(1,-1)和(2,1)

【解析】(1)A(0,2), B,1).

(2)

(3)如圖1,可求得拋物線的頂點D).

設直線BD的關系式為, 將點BD的坐標代入,求得,,

BD的關系式為

設直線BDx 軸交點為E,則點E,0),CE=

∴  △DBC的面積為

(4)存在,

點P的坐標為(1,-1)和(2,1)

(1)根據(jù)腰長為的等腰Rt△ABC(∠C=90°),由AC= ,CO=1,求出AO即可得出A點的坐標,進而得出B點的坐標;

(2)將B點坐標代入y=ax2+ax-2即可得出二次函數(shù)解析式;

(3)由(2)得頂點D的坐標,從而求得BD的關系式,設直線BDx 軸交點為E,可求得E點坐標,求得CE長,最后求得△DBC的面積

(4)延長BC到P,使CP=BC,連接AP,利用等腰直角三角形的性質(zhì)與全等三角形的判定與性質(zhì)解答即可.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案