一輪船航行于相距60千米的兩個碼頭之間順水航行需用3小時,逆水航行需用5小時.

解:這只船的順水速是(    )千米/時,逆水速是(    )千米/時,若設水流速為x千米/時,列方程為(      ),解x=(    ).船在靜水中的速度為(    )千米/時.

答案:F
解析:

20 ; 12 ; 20-x=12+xx=4,16


提示:

認真審題,正確列出方程并求解。


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,一艘輪船在海上以每小時36海里的速度向正西方向航行,上午8時,在B處測得小島A在北偏東30°方向,之后輪船繼續(xù)向正西方向航行,于上午9精英家教網(wǎng)時到達C處,這時測得小島A在北偏東60°方向.如果輪船仍繼續(xù)向正西方向航行,于上午11時到達D處,這時輪船與小島A相距多遠?

查看答案和解析>>

科目:初中數(shù)學 來源:第1章《直角三角形的邊角關系》常考題集(13):1.4 船有觸角的危險嗎(解析版) 題型:解答題

如圖,一艘輪船在海上以每小時36海里的速度向正西方向航行,上午8時,在B處測得小島A在北偏東30°方向,之后輪船繼續(xù)向正西方向航行,于上午9時到達C處,這時測得小島A在北偏東60°方向.如果輪船仍繼續(xù)向正西方向航行,于上午11時到達D處,這時輪船與小島A相距多遠?

查看答案和解析>>

科目:初中數(shù)學 來源:第7章《銳角三角函數(shù)》中考題集(47):7.6 銳角三角函數(shù)的簡單應用(解析版) 題型:解答題

如圖,一艘輪船在海上以每小時36海里的速度向正西方向航行,上午8時,在B處測得小島A在北偏東30°方向,之后輪船繼續(xù)向正西方向航行,于上午9時到達C處,這時測得小島A在北偏東60°方向.如果輪船仍繼續(xù)向正西方向航行,于上午11時到達D處,這時輪船與小島A相距多遠?

查看答案和解析>>

科目:初中數(shù)學 來源:第1章《解直角三角形》中考題集(43):1.3 解直角三角形(解析版) 題型:解答題

如圖,一艘輪船在海上以每小時36海里的速度向正西方向航行,上午8時,在B處測得小島A在北偏東30°方向,之后輪船繼續(xù)向正西方向航行,于上午9時到達C處,這時測得小島A在北偏東60°方向.如果輪船仍繼續(xù)向正西方向航行,于上午11時到達D處,這時輪船與小島A相距多遠?

查看答案和解析>>

同步練習冊答案