【題目】如圖,在菱形中,,分別在邊上,將四邊形沿翻折,使的對應(yīng)線段經(jīng)過頂點,當(dāng)時,的值為__________.

【答案】

【解析】首先延長NFDC交于點H,進而利用翻折變換的性質(zhì)得出NHDC,再利用邊角關(guān)系得出BN,CN的長進而得出答案.

延長NFDC交于點H,

∵∠ADF=90°,

∴∠A+FDH=90°,

∵∠DFN+DFH=180°,A+B=180°,B=DFN,

∴∠A=DFH,

∴∠FDH+DFH=90°,

NHDC,

設(shè)DM=4k,DE=3k,EM=5k,

AD=9k=DC,DF=6k,

tanA=tanDFH=,

sinDFH=

DH=DF=k,

CH=9k-k=k,

cosC=cosA=,

CN=CH=7k,

BN=2k,

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某花卉種植基地欲購進甲、乙兩種君子蘭進行培育。若購進甲種2株,乙種3株,則共需成本l700元;若購進甲種3株,乙種l.則共需成本l500元。

(1)求甲、乙兩種君子蘭每株成本分別為多少元?

(2)該種植基地決定在成本不超過30000元的前提下購入甲、乙兩種君子蘭,若購入乙種君子蘭的株數(shù)比甲種君子蘭的3倍還多10株,求最多購進甲種君子蘭多少株?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校計劃成立學(xué)生社團,要求每一位學(xué)生都選擇一個社團,為了了解學(xué)生對不同社團的喜愛情況,學(xué)校隨機抽取了部分學(xué)生進行“我最喜愛的一個學(xué)生社團”問卷調(diào)查,規(guī)定每人必須并且只能在“文學(xué)社團”、“科學(xué)社團”、“書畫社團”、“體育社團”和“其他”五項中選擇一項,并將統(tǒng)計結(jié)果繪制了如下兩個不完整的統(tǒng)計圖表.

社團名稱

人數(shù)

文學(xué)社團

18

科技社團

a

書畫社團

45

體育社團

72

其他

b

請解答下列問題:

(1)a=   ,b=   

(2)在扇形統(tǒng)計圖中,“書畫社團”所對應(yīng)的扇形圓心角度數(shù)為   

(3)若該校共有3000名學(xué)生,試估計該校學(xué)生中選擇“文學(xué)社團”的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將正整數(shù) 1 2024 按一定規(guī)律排列成如圖所示的 8 列,規(guī)定從上到下依次為第 1 行,第 2 行,第 3 行,從左往右依次為第 1 列至第 8 列.

(1)數(shù) 56 在第 ;

(2)平移圖中帶陰影的方框,使方框框住相鄰的三個數(shù),若被框住的三個數(shù)中最大的一個數(shù)為 x,則被框的三個數(shù)的和能否等于 2019?若能,請求出 x;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定,對數(shù)軸上的任意點P進行如下操作:先將點P表示的數(shù)乘以﹣1,再把所得數(shù)對應(yīng)的點向右平移2個單位,得到點P的對應(yīng)點P'.現(xiàn)對數(shù)軸上的點A,B進行以上操作,分別得到點A',B'

1)若點A對應(yīng)的數(shù)是﹣2,則點A'對應(yīng)的數(shù)x=     ;若點B'對應(yīng)的數(shù)是2,則點B對應(yīng)的數(shù)y=    

2)在(1)的條件下,求代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了給游客提供更好的服務(wù),某景區(qū)隨機對部分游客進行了關(guān)于景區(qū)服務(wù)工作滿意度的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖表.

根據(jù)圖表信息,解答下列問題:

(1)本次調(diào)查的總?cè)藬?shù)為 ,表中的值為

(2)請補全條形統(tǒng)計圖;

(3)據(jù)統(tǒng)計,該景區(qū)平均每天接待游客約3600人,若將非常滿意滿意作為游客對景區(qū)服務(wù)工作的肯定,請你估計該景區(qū)服務(wù)工作平均每天得到多少名游客的肯定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,,,邊的中點,分別是上的動點,連接,則的最小值是(

A. 6B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)已知:如圖1,在△ABC中,∠ABC的平分線與∠ACB的平分線交于點O,求證:∠BOC=90°+A

2)如圖2,在△ABC中,BP,CP分別是△ABC的外角∠DBC和∠ECB的平分線,試探究∠BPC與∠A的關(guān)系.

3)如圖3,在△ABC中,CE平分∠ACB,BE是△ABC的外角∠ABD的平分線,試探究∠BEC與∠A的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)已知2a1的平方根是±33a+b9的立方根是2,c的整數(shù)部分,求a+2b+c的值.

2)有四個實數(shù)分別為32,,

請你計算其中有理數(shù)的和.

x2中的和的平方,求x的值.

查看答案和解析>>

同步練習(xí)冊答案