【題目】如圖所示,拋物線y=ax2+bx+ca≠0)與x軸交于點A-2,0)、B1,0),直線x=與此拋物線交于點C,與x軸交于點M,在直線上取點D,使MD=MC,連接ACBC,AD,BD,某同學(xué)根據(jù)圖象寫出下列結(jié)論:①a-b=0;②當(dāng)x時,yx增大而增大;③四邊形ACBD是菱形;④9a-3b+c0.你認(rèn)為其中正確的是

A. ②③④ B. ①②③ C. ①③④ D. ①②③④

【答案】B

【解析】(1)∵拋物線y=ax2+bx+ca≠0)與x軸交于點A-20)、B1,0),

①,②,

∴由①-②可得: ,即: ;故第一個結(jié)論正確;

2∵點A、B的坐標(biāo)分別為(-20)、(1,0),點M的坐標(biāo)為(-0.50),

M是線段AB的中點,

直線是拋物線的對稱軸

拋物線開口向下,

當(dāng)x時,yx增大而增大,故第二個結(jié)論是正確的;

3)∵點M既是AB中點,又是CD中點,且CD⊥AB,

∴CDAB互相垂直平分,

四邊形ACBD是菱形.故第三個結(jié)論是正確的;

(4)∵拋物線的開口向下,點A的坐標(biāo)是(-2,0),

結(jié)合圖象可知當(dāng) ,故第四個結(jié)論是錯誤的;

綜上所述,正確的結(jié)論是①②③.

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是以O為圓心,AB長為直徑的半圓弧,點CAB上一定點.點P上一動點,連接PA,PC,過點PPDABD已知AB=6cm,設(shè)A、P兩點間的距離為x cm,P、C兩點間的距離為y1 cm,PD兩點間的距離為y2 cm

小剛根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,分別對函數(shù)y1y2隨自變量x變化而變化的規(guī)律進(jìn)行了探究.下面是小剛的探究過程,請將它補充完整:

1)按照下表中自變量x的值進(jìn)行取點、畫圖、測量,分別得到y1y2x的幾組對應(yīng)值:

x/cm

0

1

2

3

4

5

6

y1/cm

4.00

3.96

m

3.61

3.27

2.77

2.00

y2/cm

0.00

0.99

1.89

2.60

2.98

2.77

0.00

經(jīng)測量,m的值是 ;(保留一位小數(shù))

2)在同一平面直角坐標(biāo)系xOy中,描出補全后的表中各組數(shù)值所對應(yīng)的點(x,y1),點(x,y2),并畫出函數(shù)y1, y2的圖象;

3)結(jié)合函數(shù)圖象,回答問題:△APC為等腰三角形時,AP的長度約為 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+mx+4mx軸交于點A(,0)和點B(,0),與y軸交于點C,若對稱軸在y軸的右側(cè).

1)求拋物線的解析式

2)在拋物線的對稱軸上取一點M,使|MC-MB|的值最大;

3)點Q是拋物線上任意一點,過點QPQx軸交直線BC于點P,連接CQ,當(dāng)△CPQ是等腰三角形時,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,弦CDAB,垂足為H,連結(jié)AC,過上一點E作EGAC交CD的延長線于點G,連結(jié)AE交CD于點F,且EG=FG,連結(jié)CE.

(1)求證:ECF∽△GCE;

(2)求證:EG是O的切線;

(3)延長AB交GE的延長線于點M,若tanG=,AH=,求EM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一艘輪船向正東方向航行,在A處測得燈塔PA的北偏東60°方向,航行40海里到達(dá)B處,此時測得燈塔PB的北偏東15°方向.

(1)求燈塔P到輪船航線的距離PD;(結(jié)果保留根號)

(2)當(dāng)輪船從B處繼續(xù)向東航行時,一艘快艇從燈塔P處同時前往D處,盡管快艇速度是輪船速度的2倍,但快艇還是比輪船晚15分鐘到達(dá)D處,求輪船每小時航行多少海里.(結(jié)果精確到1海里,參考數(shù)據(jù)≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:

售價x(元/千克)

50

60

70

銷售量y(千克)

100

80

60

1)求yx之間的函數(shù)表達(dá)式;

2)設(shè)商品每天的總利潤為W(元),則當(dāng)售價x定為多少元時,廠商每天能獲得最大利潤?最大利潤是多少?

3)如果超市要獲得每天不低于1350元的利潤,且符合超市自己的規(guī)定,那么該商品每千克售價的取值范圍是多少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以等邊三角形ABCBC邊為直徑畫半圓,分別交ABAC于點E、D,DF是圓的切線,過點FBC的垂線交BC于點G.若AF的長為2,則FG的長為

A. 4 B. C. 6 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校7名學(xué)生在某次測量體溫(單位:℃)時得到如下數(shù)據(jù):36.336.4,36.536.7,36.636.5,36.5,對這組數(shù)據(jù)描述正確的是( 。

A.眾數(shù)是36.5B.中位數(shù)是36.7

C.平均數(shù)是36.6D.方差是0.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,以BC為直徑的圓分別交邊AC、ABD、E兩點,連接BD、DE.若BD平分∠ABC,則下列結(jié)論不一定成立的是(  )

A. BDAC B. AC2=2ABAE C. ADE是等腰三角形 D. BC=2AD

查看答案和解析>>

同步練習(xí)冊答案