【題目】已知:關于x的二次函數(shù)y=x2+bx+c經(jīng)過點(﹣1,0)和(2,6).
(1)求b和c的值.
(2)若點A(n,y1),B(n+1,y2),C(n+2,y3)都在這個二次函數(shù)的圖象上,問是否存在整數(shù)n,使?若存在,請求出n;若不存在,請說明理由.
(3)若點P是二次函數(shù)圖象在y軸左側部分上的一個動點,將直線y=﹣2x沿y軸向下平移,分別交x軸、y軸于C、D兩點,若以CD為直角邊的△PCD與△OCD相似,請求出所有符合條件點P的坐標.
【答案】(1)n=3或n=-5 (2) (,-) 或(,-)
【解析】試題分析:(1)利用待定系數(shù)法即可解決問題.
(2)求出y1,y2,y3代入解方程即可解決問題,注意運算技巧.
(3)當D為直角頂點時,由圖象可知不存在點P,使得△PCD為直角三角形,當C為直角頂點,CD為直角邊時,作PE⊥OC于E.分兩種情形①CD=2PC,②PC=2CD,
設直線y=-2x向下平移m個單位,則直線CD解析式為y=-2x-m,求出點P坐標(用m表示),代入拋物線解析式即可解決問題.
試題解析:(1)把(-1,0)和(2,6)代入y=x2+bx+c中,
得,解得,
∴b=1,c=0.
(2)由題意y1=n2+n,y2=(n+1)2+(n+1),y3=(n+2)2+(n+2),
∵,
∴,
∴,
∴,
整理得n2+3n-10=0,
解得n=2或-5.
經(jīng)過檢驗n=2和-5是分式方程的解.
(3)當D為直角頂點時,由圖象可知不存在點P,使得△PCD為直角三角形,當C為直角頂點,CD為直角邊時,作PE⊥OC于E.
設直線y=-2x向下平移m個單位,則直線CD解析式為y=-2x-m,
∴點D坐標(0,-m),點C坐標(-,0),
∴OD=m,OC=,
∴OD=20C,
∵△PCD與△OCD相似,
∴CD=2PC或PC=2CD,
①當CD=2PC時,
∵∠PCD=90°,
∴∠PCE+∠DCO=90°,∠DCO+∠CDO=90°,
∴∠PCE=∠CDO,
∵∠PEC=∠COD=90°,
∴△COD∽△PEC,
∴,
∴EC=,PE=,
∴點P坐標(-m,-),代入y=x2+x,
得-=m2-m,解得m=或(0舍棄)
∴點P坐標(-,-).
②PC=2CD時,由,
∴EC=2m,PE=m,
∴點P坐標(-m,-m),代入y=x2+x,
得-m=m2-m,
解得m=和(0舍棄),
∴點P坐標(-,-).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABF中,以AB為直徑的圓分別交邊AF、BF于C、E兩點,CD⊥AF.AC是∠DAB的平分線,
(1)求證:直線CD是⊙O的切線.
(2)求證:△FEC是等腰三角形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知∠ABC,∠ACB的平分線交于I.
(1)根據(jù)下列條件分別求出∠BIC的度數(shù):
①∠ABC=70°,∠ACB=50°;
②∠ACB+∠ABC=120°;
③∠A=90°;
④∠A=n°.
(2)你能發(fā)現(xiàn)∠BIC與∠A的關系嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,以O為圓心,適當長為半徑畫弧,交x軸于點M,交y軸于點N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧在第二象限交于點P.若點P的坐標為(2a,b+1),則a與b的數(shù)量關系為(。
A. a=b B. 2a﹣b=1 C. 2a+b=﹣1 D. 2a+b=1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩同學的家與學校的距離均為3000米.甲同學先步行600米,然后乘公交車去學校、乙同學騎自行車去學校.已知甲步行速度是乙騎自行車速度的,公交車的速度是乙騎自行車速度的2倍.甲乙兩同學同時從家發(fā)去學校,結果甲同學比乙同學早到2分鐘.
(1)求乙騎自行車的速度;
(2)當甲到達學校時,乙同學離學校還有多遠?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,DE是過點A的直線,BD⊥DE于D,CE⊥DE于點E.
(1)若B、C在DE的同側(如圖1所示)且AD=CE,AB與AC垂直嗎?為什么?
(2)若B、C在DE的兩側(如圖2所示),其他條件不變,AB與AC是否垂直嗎?若垂直請給出證明;若不垂直,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com