【題目】下列運(yùn)算正確的是( )
A.(x+y2)2=x2+y4
B.b6÷b2=b3
C.﹣a2+2a2=a2
D.(2y)2×(﹣y)=﹣2y3
【答案】C
【解析】解:A、(x+y2)2=x2+2xy2+y4 , 故此選項(xiàng)錯(cuò)誤;
B、b6÷b2=b4 , 故此選項(xiàng)錯(cuò)誤;
C、﹣a2+2a2=a2 , 正確;
D、(2y)2×(﹣y)=﹣4y3 , 故此選項(xiàng)錯(cuò)誤.
故選:C.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用單項(xiàng)式乘單項(xiàng)式的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握單項(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,將一點(diǎn)(橫坐標(biāo)與縱坐標(biāo)不相等)的橫坐標(biāo)與縱坐標(biāo)互換后得到的點(diǎn)叫這一點(diǎn)的“互換點(diǎn)”,如(-3,5)與(5,-3)是一對(duì)“互換點(diǎn)”.
(1)任意一對(duì)“互換點(diǎn)”能否都在一個(gè)反比例函數(shù)的圖象上?為什么?
(2)M、N是一對(duì)“互換點(diǎn)”,若點(diǎn)M的坐標(biāo)為,求直線MN的表達(dá)式(用含、的代數(shù)式表示);
(3)在拋物線的圖象上有一對(duì)“互換點(diǎn)”A、B,其中點(diǎn)A在反比例函數(shù)的圖象上,直線AB經(jīng)過(guò)點(diǎn)P(,),求此拋物線的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是甲、乙、丙三人百米賽跑的函數(shù)圖象,根據(jù)右圖回答下面問(wèn)題;
(1)在這次比賽中,獲得冠軍:
(2)甲比乙提前秒到達(dá)目的地;
(3)乙的速度比丙快米/秒.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是中國(guó)象棋一次對(duì)局時(shí)的部分示意圖,若“帥”所在的位置用有序數(shù)對(duì)(5,1)表示.
(1)請(qǐng)你用有序數(shù)對(duì)表示其他棋子的位置;
(2)我們知道馬行“日”字,如圖中的“馬”下一步可以走到(3,4)的位置,問(wèn)還可以走的位置有幾個(gè)?分別如何表示?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從下列四個(gè)條件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB=A′B′中,任取三個(gè)為條件,余下的一個(gè)為結(jié)論,則最多可以構(gòu)成正確的結(jié)論的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算正確的是( 。
A.2x2x3=2x5
B.(x﹣2)2=x2﹣4
C.x2+x3=x5
D.(x3)4=x7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C分別在軸的負(fù)半軸、軸的正半軸上,點(diǎn)B在第二象限.將矩形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),使點(diǎn)B落在軸上,得到矩形ODEF,BC與OD相交于點(diǎn)M.若經(jīng)過(guò)點(diǎn)M的反比例函數(shù)y=(x<0)的圖象交AB于點(diǎn)N,的圖象交AB于點(diǎn)N, S矩形OABC=32,tan∠DOE=,,則BN的長(zhǎng)為_(kāi)_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等邊△ABC中;
(1)如圖1,P,Q是BC邊上兩點(diǎn),AP=AQ,∠BAP=20°,求∠AQB的度數(shù);
(2)點(diǎn)P,Q是BC邊上的兩個(gè)動(dòng)點(diǎn)(不與點(diǎn)B,C重合),點(diǎn)P在點(diǎn)Q的左側(cè),且AP=AQ,點(diǎn)Q關(guān)于直線AC的對(duì)稱點(diǎn)為M,連接AM,PM.
①依題意將圖2補(bǔ)全;②小明通過(guò)觀察、實(shí)驗(yàn),提出猜想:在點(diǎn)P,Q運(yùn)動(dòng)的過(guò)程中,始終有PA=PM,小明把這個(gè)猜想與同學(xué)們進(jìn)行交流,通過(guò)討論,形成了證明該猜想的幾種想法:
想法1:要證PA=PM,只需證△APM是等邊三角形.
想法2:在BA上取一點(diǎn)N,使得BN=BP,要證PA=PM,只需證△ANP≌△PCM.……
請(qǐng)你參考上面的想法,幫助小明證明PA=PM(一種方法即可).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com