解下列方程:(1)x2+5x-4=0;(2)
7
x2+x
+
3
x2-x
=
6
x2-1
分析:(1)考查解一元二次方程的能力,要根據(jù)方程特點選擇合適的方法,觀察可得x2+5x-4=0適用公式法求解,因此可利用求根公式解方程;
(2)要先對每個分母進行因式分解然后在確定最簡公分母,因為:x2+x=x(x+1),x2-x=x(x-1);x2-1=(x+1)(x-1);所以可得最簡公分母為:x(x+1)(x-1),再去分母解分式方程.
解答:解:(1)∵a=1,b=5,c=-4
∴x=
-5±
41
2

x1=
-5+
41
2
;x2=
-5-
41
2

(2)方程兩邊同乘x(x+1)(x-1),
去分母得:7(x-1)+3(x+1)=6x
解得:x=1.
經(jīng)檢驗:x=1是原方程的增根,所以原方程無解.
點評:對一元二次方程要根據(jù)方程特點選擇合適的方法進行求解,對分式方程要注意確定最簡公分母,求解后要進行驗根.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

用因式分解法解下列方程:
(1)(x-1)2-2(x2-1)=0;
(2)(x-1)(x+3)=12.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

解下列方程:
(1)6x=3x-7;
(2)
7x-5
4
=
3
8
;
(3)y-
1
2
=
1
2
y-2
;
(4)
1-x
2
=2-
x-2
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

解下列方程:
(1)1-3(2-x)=0;
(2)
2x+1
3
-
10x+1
6
=1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

解下列方程:
(1)
x-3
4
-
x-4
3
=
1
2

(2)
x+1
4
-1=
2x-1
6

(3)
x+3
4
-1=
x-3
2
-2

(4)
0.4x-0.1
0.5
=
0.1+0.2x
0.3
-0.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

解下列方程:
(1)-4x+5x=2
(2)-3x-7x=5
(3)x-7x+5x=2-6
(4)2x+0.5x-4.5x=2-6.

查看答案和解析>>

同步練習冊答案