【題目】感知:如圖1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.
探究:如圖2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求證:DB=DC.
應(yīng)用:如圖3,四邊形ABCD中,∠B=45°,∠C=135°,DB=DC=a,則AB﹣AC= (用含a的代數(shù)式表示)
【答案】探究:證明見(jiàn)解析;應(yīng)用:a.
【解析】
試題分析:探究:欲證明DB=DC,只要證明△DFC≌△DEB即可.
應(yīng)用:先證明△DFC≌△DEB,再證明△ADF≌△ADE,結(jié)合BD=EB即可解決問(wèn)題.
試題解析:探究:
證明:如圖②中,DE⊥AB于E,DF⊥AC于F,∵DA平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,∴∠B=∠FCD,在△DFC和△DEB中,∵∠F=∠DEB,∠FCD=∠B,DF=DB,∴△DFC≌△DEB,∴DC=DB.
應(yīng)用:解;如圖③連接AD、DE⊥AB于E,DF⊥AC于F,∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,∴∠B=∠FCD,在△DFC和△DEB中,∵∠F=∠DEB,∠FCD=∠B,DC=DB,∴△DFC≌△DEB,∴DF=DE,CF=BE,在RT△ADF和RT△ADE中,∵AD=AD,DE=DF,∴△ADF≌△ADE,∴AF=AE,∴AB﹣AC=(AE+BE)﹣(AF﹣CF)=2BE,在RT△DEB中,∵∠DEB=90°,∠B=∠EDB=45°,BD=a,∴BE=a,∴AB﹣AC=a.故答案為:a.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=60°,△ABC的角平分線(xiàn)AD、CE相交于點(diǎn)O,
(1)求∠AOC的度數(shù);
(2)求證:OE=OD;
(3).猜測(cè)AE,CD,AC三者的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一塊草坪的形狀為四邊形ABCD,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m,求這塊草坪的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,AD⊥BC于D,DE∥AC于E,DF∥AB交AC于F,連接EF。
(1)當(dāng)△ABC滿(mǎn)足什么條件時(shí),四邊形AEDF是矩形;
(2)當(dāng)△ABC滿(mǎn)足什么條件時(shí),四邊形AEDF是正方形,并說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,O為AC中點(diǎn),過(guò)點(diǎn)O的直線(xiàn)分別與AB、CD交于點(diǎn)E、F,連結(jié)BF交AC于點(diǎn)M,連結(jié)DE、BO.若∠COB=60°,F(xiàn)O=FC,則下列結(jié)論:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正確結(jié)論的個(gè)數(shù)是( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,AC的垂直平分線(xiàn)交AB于E,D為垂足,連接EC,若CE=5,則BC等于( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】坐標(biāo)平面上,某個(gè)一次函數(shù)的圖形通過(guò)(5,0)、(10,﹣10)兩點(diǎn),判斷此函數(shù)的圖形會(huì)通過(guò)下列哪一點(diǎn)?( 。
A.( ,9 )
B.( ,9 )
C.( ,9 )
D.( ,9 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=kx+2與x軸、y軸分別交于A、B兩點(diǎn),OA:OB=.以線(xiàn)段AB為邊在第二象限內(nèi)作等腰Rt△ABC,∠BAC=90°.
(1)求點(diǎn)A的坐標(biāo)和k的值;
(2)求點(diǎn)C坐標(biāo);
(3)直線(xiàn)y=x在第一象限內(nèi)的圖象上是否存在點(diǎn)P,使得△ABP的面積與△ABC的面積相等?如果存在,求出點(diǎn)P坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1的長(zhǎng)方形ABCD中,E點(diǎn)在AD上,且BE=2AE.今分別以BE、CE為折線(xiàn),將A、D向BC的方向折過(guò)去,圖2為對(duì)折后A、B、C、D、E五點(diǎn)均在同一平面上的位置圖.若圖2中,∠AED=15°,則∠BCE的度數(shù)為何?( 。
A. 30 B. 32.5 C. 35 D. 37.5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com