如圖,矩形OABC的頂點A、C分別在x軸和y軸上,點B的坐標(biāo)為(2,3).雙曲線y=(x>0)的圖象經(jīng)過BC的中點D,且與AB交于點E,連接DE.
(1)求k的值及點E的坐標(biāo);
(2)若點F是OC邊上一點,且△FBC∽△DEB,求直線FB的解析式.
解答: 解:(1)∵BC∥x軸,點B的坐標(biāo)為(2,3),
∴BC=2,
∵點D為BC的中點,
∴CD=1,
∴點D的坐標(biāo)為(1,3),
代入雙曲線y=(x>0)得k=1×3=3;
∵BA∥y軸,
∴點E的橫坐標(biāo)與點B的橫坐標(biāo)相等,為2,
∵點E在雙曲線上,
∴y=
∴點E的坐標(biāo)為(2,);
(2)∵點E的坐標(biāo)為(2,),B的坐標(biāo)為(2,3),點D的坐標(biāo)為(1,3),
∴BD=1,BE=,BC=2
∵△FBC∽△DEB,
∴
即:
∴FC=
∴點F的坐標(biāo)為(0,)
設(shè)直線FB的解析式y(tǒng)=kx+b(k≠0)
則
解得:k=,b=
∴直線FB的解析式y(tǒng)=
科目:初中數(shù)學(xué) 來源: 題型:
如圖,點E、F為線段BD的兩個三等分點,四邊形AECF是菱形.
(1)試判斷四邊形ABCD的形狀,并加以證明;
(2)若菱形AECF的周長為20,BD為24,試求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
直線l1:y=k1x+b與雙曲線l2:y=在同一平面直角坐標(biāo)系中的圖象如圖所示,則關(guān)于x的不等式>k1x+b的解集為 _________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,△ABC中,AB=AC,AD是△ABC外角的平分線,已知∠BAC=∠ACD.
(1)求證:△ABC≌△CDA;(2)若∠B=60°,求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如果m是任意實數(shù),則點P(m﹣4,m+1)一定不在( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下列說法不正確的是 ( )
A、一個有理數(shù)不是整數(shù)就是分數(shù). B、絕對值等于本身的數(shù)只有正數(shù).
C、倒數(shù)等于本身的數(shù)只有. D、奇次冪等于本身的數(shù)只有.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
五名學(xué)生投籃球,規(guī)定每人投20次,統(tǒng)計他們每人投中的次數(shù).得到五個數(shù)據(jù).若這五個數(shù)據(jù)的中位數(shù)是6.唯一眾數(shù)是7,則他們投中次數(shù)的總和可能是( )
| A. | 20 | B. | 28 | C. | 30 | D. | 31 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com