如圖,在平面直角坐標(biāo)系xoy中,雙曲線與直線y2=k′x+b交于點(diǎn)A、E兩點(diǎn).AE交x軸于點(diǎn)C,交y軸于點(diǎn)D,AB⊥x軸于點(diǎn)B,C為OB中點(diǎn).若D點(diǎn)坐標(biāo)為(0,-2)且S△AOD=4.
(1)求雙曲線與直線AE的解析式.
(2)求E點(diǎn)的坐標(biāo).
(3)觀察圖象,寫(xiě)出y1>y2時(shí)x的取值范圍.

【答案】分析:(1)需求A點(diǎn)坐標(biāo),由S△AOD=4,點(diǎn)D(0,-2),可求A的橫坐標(biāo);由C是OB的中點(diǎn),可得OD=AB求出A點(diǎn)縱坐標(biāo),從而求出反比例函數(shù)解析式;根據(jù)A、D兩點(diǎn)坐標(biāo)求一次函數(shù)解析式;
(2)根據(jù)(1)中所求出雙曲線解析式和直線AE的解析式組成方程組,求出x,的值,再根據(jù)E所在的象限即可求出它的坐標(biāo);
(3)觀察圖象知,分兩種情況討論,當(dāng)y1>y2時(shí)得出x的取值范圍;
解答:解:(1)作AM⊥y軸于點(diǎn)M,
∵D(0,-2),
∴DO=2,
∵S△AOD=4且AM⊥y軸,

∴AM=4.
∵y軸⊥x軸,AB⊥x軸,
∴∠ABC=∠DOC=90°.
∵C為OB中點(diǎn),
∴BC=OC.
∵∠ACB=∠DCO,
∴△ABC≌△DOC(ASA),
∴AB=DO=2,
∴A(4,2).
∵雙曲線過(guò)A,

∴k=8,
∴雙曲線解析式為:
∵直線AE過(guò)A(4,2)與D(0,-2),
,
解之得,
∴直線AE解析式為:y=x-2;

(2)根據(jù)(1)得:
解得,
根據(jù)E所在的象限得,E(-2,-4);

(3)在y軸的右側(cè),當(dāng)y1>y2時(shí),x的取值范圍是:0<x<4,
在y軸的左側(cè),當(dāng)y1>y2時(shí),x的取值范圍是x<-2,
所以y1>y2時(shí)x的取值范圍是:0<x<4或x<-2.
點(diǎn)評(píng):此題考查了反比例函數(shù)的綜合;熟練掌握通過(guò)求點(diǎn)的坐標(biāo)進(jìn)一步求函數(shù)解析式的方法;通過(guò)觀察圖象解不等式時(shí),從交點(diǎn)看起,函數(shù)圖象在上方的函數(shù)值大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案