如圖,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,DE∥BC,則圖中等腰三角形的個數(shù)( )
A.1個 B.3個 C.4個 D.5個
D【考點】等腰三角形的判定與性質(zhì);角平分線的性質(zhì).
【分析】首先根據(jù)已知條件分別計算圖中每一個三角形每個角的度數(shù),然后根據(jù)等腰三角形的判定:等角對等邊解答,做題時要注意,從最明顯的找起,由易到難,不重不漏.
【解答】解:∵AB=AC,∠A=36°∴△ABC是等腰三角形,
∠ABC=∠ACB==72°,
BD平分∠ABC,∴∠EBD=∠DBC=36°,
∵ED∥BC,
∴∠AED=∠ADE=72°,∠EDB=∠CBC=36°,
∴在△ADE中,∠AED=∠ADE=72°,AD=AE,△ADE為等腰三角形,
在△ABD中,∠A=∠ABD=36°,AD=BD,△ABD是等腰三角形,
在△BED中,∠EBD=∠EDB=36°,ED=BE,△BED是等腰三角形,
在△BDC中,∠C=∠BDC=72°,BD=BC,△BDC是等腰三角形,
所以共有5個等腰三角形.
故選D.
【點評】本題考查了等腰三角形的性質(zhì)及等腰三角形的判定,角的平分線的性質(zhì),兩直線平行的性質(zhì);求得各個角的度數(shù)是正確解答本題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:
直線AB與x軸交于點A(1,0),與y軸交于點B(0,﹣2).
(1)求直線AB的解析式;
(2)若直線AB上一點C在第一象限且點C的坐標為(2,2),求△BOC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
已知等腰△ABC中,AD⊥BC于點D,且AD=BC,則△ABC底角的度數(shù)為( )
A.45° B.75°
C.45°或15°或75° D.60°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,D是等邊△ABC的AC邊上的中點,點E在BC的延長線上,DE=DB,△ABC的周長是9,則∠E=__________°,CE=__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
端午節(jié)期間,某食堂根據(jù)職工食用習慣,用700元購進甲、乙兩種粽子260個,其中甲粽子比乙種粽子少用100元,已知甲種粽子單價比乙種粽子單價高20%,乙種粽子的單價是多少元?甲、乙兩種粽子各購買了多少個?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com