(2008•南平)如圖,奧運(yùn)五環(huán)標(biāo)志里,包含了圓與圓的位置關(guān)系中的外離和   
【答案】分析:兩圓之間有5種位置關(guān)系:無公共點(diǎn)的,且每一個圓上的點(diǎn)都在另一圓的外部叫外離,其中一個圓上的點(diǎn)在另一個圓內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,除這個點(diǎn)外,每一個圓上的點(diǎn)都在另一圓之外叫外切,其中一個圓上的點(diǎn)在另一個圓內(nèi)叫內(nèi)切;有兩個公共點(diǎn)的叫相交.
解答:解:根據(jù)圖形可知:上下兩個圓有兩個公共點(diǎn),則兩圓相交;
上面三個圓之間是相離的關(guān)系.
由此可知此題中圓與圓的位置關(guān)系是外離和相交.
點(diǎn)評:此題考查的是能夠根據(jù)公共點(diǎn)的個數(shù)來判斷圓與圓的位置關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年重慶市綦江縣趕水中學(xué)學(xué)模擬測試數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•南平)如圖,平面直角坐標(biāo)系中有一矩形紙片OABC,O為原點(diǎn),點(diǎn)A,C分別在x軸,y軸上,點(diǎn)B坐標(biāo)為(m,)(其中m>0),在BC邊上選取適當(dāng)?shù)狞c(diǎn)E和點(diǎn)F,將△OCE沿OE翻折,得到△OGE;再將△ABF沿AF翻折,恰好使點(diǎn)B與點(diǎn)G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求過點(diǎn)O,G,A的拋物線的解析式和對稱軸;
(3)在拋物線的對稱軸上是否存在點(diǎn)P,使得△OPG是等腰三角形?若不存在,請說明理由;若存在,直接答出所有滿足條件的點(diǎn)P的坐標(biāo)(不要求寫出求解過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省紹興市紹興縣蘭亭鎮(zhèn)中數(shù)學(xué)中考模擬試卷(解析版) 題型:解答題

(2008•南平)如圖,平面直角坐標(biāo)系中有一矩形紙片OABC,O為原點(diǎn),點(diǎn)A,C分別在x軸,y軸上,點(diǎn)B坐標(biāo)為(m,)(其中m>0),在BC邊上選取適當(dāng)?shù)狞c(diǎn)E和點(diǎn)F,將△OCE沿OE翻折,得到△OGE;再將△ABF沿AF翻折,恰好使點(diǎn)B與點(diǎn)G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求過點(diǎn)O,G,A的拋物線的解析式和對稱軸;
(3)在拋物線的對稱軸上是否存在點(diǎn)P,使得△OPG是等腰三角形?若不存在,請說明理由;若存在,直接答出所有滿足條件的點(diǎn)P的坐標(biāo)(不要求寫出求解過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年湖北省咸寧市通城縣中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2008•南平)如圖,平面直角坐標(biāo)系中有一矩形紙片OABC,O為原點(diǎn),點(diǎn)A,C分別在x軸,y軸上,點(diǎn)B坐標(biāo)為(m,)(其中m>0),在BC邊上選取適當(dāng)?shù)狞c(diǎn)E和點(diǎn)F,將△OCE沿OE翻折,得到△OGE;再將△ABF沿AF翻折,恰好使點(diǎn)B與點(diǎn)G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求過點(diǎn)O,G,A的拋物線的解析式和對稱軸;
(3)在拋物線的對稱軸上是否存在點(diǎn)P,使得△OPG是等腰三角形?若不存在,請說明理由;若存在,直接答出所有滿足條件的點(diǎn)P的坐標(biāo)(不要求寫出求解過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣東省茂名十中初中數(shù)學(xué)綜合練習(xí)試卷(6)(解析版) 題型:解答題

(2008•南平)如圖,平面直角坐標(biāo)系中有一矩形紙片OABC,O為原點(diǎn),點(diǎn)A,C分別在x軸,y軸上,點(diǎn)B坐標(biāo)為(m,)(其中m>0),在BC邊上選取適當(dāng)?shù)狞c(diǎn)E和點(diǎn)F,將△OCE沿OE翻折,得到△OGE;再將△ABF沿AF翻折,恰好使點(diǎn)B與點(diǎn)G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求過點(diǎn)O,G,A的拋物線的解析式和對稱軸;
(3)在拋物線的對稱軸上是否存在點(diǎn)P,使得△OPG是等腰三角形?若不存在,請說明理由;若存在,直接答出所有滿足條件的點(diǎn)P的坐標(biāo)(不要求寫出求解過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年福建省南平市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•南平)如圖,平面直角坐標(biāo)系中有一矩形紙片OABC,O為原點(diǎn),點(diǎn)A,C分別在x軸,y軸上,點(diǎn)B坐標(biāo)為(m,)(其中m>0),在BC邊上選取適當(dāng)?shù)狞c(diǎn)E和點(diǎn)F,將△OCE沿OE翻折,得到△OGE;再將△ABF沿AF翻折,恰好使點(diǎn)B與點(diǎn)G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求過點(diǎn)O,G,A的拋物線的解析式和對稱軸;
(3)在拋物線的對稱軸上是否存在點(diǎn)P,使得△OPG是等腰三角形?若不存在,請說明理由;若存在,直接答出所有滿足條件的點(diǎn)P的坐標(biāo)(不要求寫出求解過程).

查看答案和解析>>

同步練習(xí)冊答案