如圖所示,O是銳角三角形ABC內(nèi)一點(diǎn),∠AOB=∠BOC=∠COA=120°,P是ΔABC內(nèi)不同于O的另一點(diǎn);ΔA1BO1、ΔA1BP1分別由ΔAOB,ΔAPB旋轉(zhuǎn)而得,旋轉(zhuǎn)

角都為60°,則下列結(jié)論:①A1、O1、O、C在一條直線上;②A1O1+O1O=AO+BO;③A1P1+PP1=PA+PB;④PA+PB+PC>OA+OB+OC。其中正確的有          (原創(chuàng))

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

38、如圖1中的△ABC是直角三角形,∠C=90°.現(xiàn)將△ABC補(bǔ)成矩形,使△ABC的兩個(gè)頂點(diǎn)為矩形一邊的兩個(gè)端點(diǎn),第三個(gè)頂點(diǎn)落在矩形這一邊的對(duì)邊上,那么符合條件的矩形可以畫出兩個(gè),如圖2所示:

(1)設(shè)圖2中的矩形ACBD和矩形AEFB的面積分別為S1和S2,則S1
=
S2(填“>”,“=”,“<”)
(2)如圖3中的△ABC是銳角三角形,且三邊滿足BC>AC>AB,按短文中的要求把它補(bǔ)成矩形,那么
符合要求的矩形可以畫出
3
個(gè),并在圖3中把符合要求的矩形畫出來.
(3)在圖3中所畫出的矩形中,它們的面積之間具有怎樣的關(guān)系?并說明你的理由;
(4)猜想圖3中所畫的矩形的周長之間的大小關(guān)系,不必證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在直線l上依次擺放著七個(gè)正方形,已知S1=1,S2=2,S3=3,S4=4,另外三個(gè)正方形的邊長分別為a,b,c.
(1)圖中Rt△ABC與
 
全等,所以DE=
 
,a=
AC2+BC2
=
 

(2)用上述(1)中思路求b、c的值.(提示:△ABC與△BDE的斜邊相等,并且有一個(gè)角是直角,只需設(shè)一個(gè)銳角相等即可)
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面的材料,并回答所提出的問題:如圖所示,在銳角三角形ABC中,求證:
b
sinB
=
c
sinC

這個(gè)三角形不是一個(gè)直角三角形,不能直接使用銳角三角函數(shù)的知識(shí)去處理,所以必須構(gòu)造直角三角形,精英家教網(wǎng)過點(diǎn)A作AD⊥BC,垂足為D,則在Rt△ABD和Rt△ACD中由正弦定義可完成證明.
解:如圖,過點(diǎn)A作AD⊥BC,垂足為D,
在Rt△ABD中,sinB=
AD
AB
,則AD=csinB
Rt△ACD中,sinC=
AD
AC
,則AD=bsinC
所以c sinB=b sinC,即
b
sinB
=
c
sinC

(1)在上述分析證明過程中,主要用到了下列三種數(shù)學(xué)思想方法的哪一種( 。
A、數(shù)形結(jié)合的思想;B、轉(zhuǎn)化的思想;C、分類的思想
(2)用上述思想方法解答下面問題.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面積.
(3)用上述結(jié)論解答下面的問題(不必添加輔助線)
在銳角三角形ABC中,AC=10,AB=5
6
,∠C=60°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料,解答問題.
已知:銳角△ABC,如圖,求作:正方形DEFG,使D、E落在BC邊上,F(xiàn)、G分別落在AC、AB邊上.
作法:(1)畫一個(gè)有三個(gè)頂點(diǎn)落在△ABC兩邊上的正方形D1、E1、F1、G1(如圖所示);
(2)連接BF,并延長交AC于點(diǎn)F;
(3)過點(diǎn)F作EF⊥BC于點(diǎn)E;
(4)過F作FG∥BC,交AB于點(diǎn)G;
(5)過點(diǎn)G作GD⊥BC于點(diǎn)D;則四邊形DEFG即為所求作的正方形.
問題:(1)說明上述所求作四邊形DEFG為正方形的理由.
(2)在△ABC中,如果BC=120,BC邊上的高為80,求上述正方形DEFG的邊長.
(3)若把(2)中的正方形DEFG改為矩形DEFG,且GF=
12
DG,其他條件不變,此時(shí),GF是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

平面是這樣,那曲面呢?我們?cè)倏匆活}(如圖1),從A到B,怎樣走最近呢?與前兩題相同,把圓柱體展開(如圖2),此時(shí),只有A點(diǎn)位于與長方形的交界處時(shí),才是最短路徑,且只有一條最短路徑AB.

從上面幾題可以看出立體圖形中的最短路徑問題,都可先把立題圖形轉(zhuǎn)化成平面圖形再思考.而且得出正方體有6條最短路徑;長方體有2條最短路徑;圓柱有1條最短路徑.這短短的八個(gè)字還真是奧妙無窮啊!
探究問題一:已知,A,B在直線L的兩側(cè),在L上求一點(diǎn),使得PA+PB最。ㄈ鐖D所示)

探究問題二:已知,A,B在直線L的同一側(cè),在L上求一點(diǎn),使得PA+PB最小.(如圖所示)

探究問題三:A是銳角MON內(nèi)部任意一點(diǎn),在∠MON的兩邊OM,ON上各取一點(diǎn)B,C,組成三角形,使三角形周長最。ㄈ鐖D所示)

探究問題四:AB是銳角MON內(nèi)部一條線段,在角MON的兩邊OM,ON上各取一點(diǎn)C,D組成四邊形,使四邊形周長最。ㄈ鐖D所示)

查看答案和解析>>

同步練習(xí)冊(cè)答案