【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,BC交⊙O于點(diǎn)E.
(1)若D為AC的中點(diǎn),證明DE是⊙O的切線;
(2)若OA=,CE=1,求△ABC的面積.
【答案】(1)見解析;(2)2.
【解析】
試題分析:(1)連接AE,OE,∠AEB=90°,∠BAC=90°,在Rt△ACE中,D為AC的中點(diǎn),則DE=AD=CD=AC,得出∠DEA=∠DAE,由OA=OE,得出∠OAE=∠OEA,則∠DEO=∠DEA+∠OEA=∠DAE+∠OAE=∠BAC=90°,即可得出結(jié)論;
(2)AB=2AO=2,由△BCA∽△BAE,得出=,求出BE=3,BC=4,由勾股定理得AC==2,則S△ABC=ABAC代入即可得出結(jié)果.
(1)證明:連接AE,OE,如圖所示:
∵AB是⊙O的直徑,
∴∠AEB=90°,
∵AC是⊙O的切線,
∴∠BAC=90°,
∵在Rt△ACE中,D為AC的中點(diǎn),
∴DE=AD=CD=AC,
∴∠DEA=∠DAE,
∵OA=OE,
∴∠OAE=∠OEA,
∴∠DEO=∠DEA+∠OEA=∠DAE+∠OAE=∠BAC=90°,
∴OE⊥DE,
∵OE為半徑,
∴DE是⊙O的切線;
(2)解:∵AO=,
∴AB=2AO=2,
∵∠CAB=∠AEB=90°,∠B=∠B,
∴△BCA∽△BAE,
∴=,即AB2=BEBC=BE(BE+EC),
∴(2)2=BE2+BE,
解得:BE=3或BE=﹣4(不合題意,舍去),
∴BE=3,
∴BC=BE+CE=3+1=4,
∴在Rt△ABC中,AC===2,
∴S△ABC=ABAC=×2×2=2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)點(diǎn)A(3,-2)關(guān)于x軸的對稱點(diǎn)的坐標(biāo)是 .
(2).若點(diǎn)(a,-2)與點(diǎn)(-3,b)關(guān)于x軸對稱,則a=__ __,b=__ __;若點(diǎn)(a,-2)與點(diǎn)(-3,b)關(guān)于y軸對稱,則a=__ __,b=__ __.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式中計算正確的是( )
A. (-a2)5 =-a10 B. (x4)3= x7 C. b5·b5= b25 D. a6÷a2=a3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2﹣2x﹣3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,該拋物線頂點(diǎn)為D,對稱軸交x軸于點(diǎn)H.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)設(shè)點(diǎn)P在x軸下方的拋物線上,當(dāng)∠ABP=∠CDB時,求出點(diǎn)P的坐標(biāo);
(3)以OB為邊最第四象限內(nèi)作等邊△OBM.設(shè)點(diǎn)E為x軸的正半軸上一動點(diǎn)(OE>OH),連接ME,把線段ME繞點(diǎn)M順時針旋轉(zhuǎn)60°得MF,求線段DF的長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個人患了流感,經(jīng)過兩輪傳染后共有121人患了流感;因此一個人傳染了 個人,三輪共有 人患了流感.(期間無人治愈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,對于點(diǎn)P(a,b),若點(diǎn)P′的坐標(biāo)為(a,ka+b)(其中k為常數(shù),且k≠0),則稱點(diǎn)P′為點(diǎn)P的“k關(guān)聯(lián)點(diǎn)”.
(1)求點(diǎn)P(﹣2,3)的“2關(guān)聯(lián)點(diǎn)”P′的坐標(biāo);
(2)若a、b為正整數(shù),點(diǎn)P的“k關(guān)聯(lián)點(diǎn)”P′的坐標(biāo)為(3,6),求出k及點(diǎn)P的坐標(biāo);
(3)如圖,點(diǎn)Q的坐標(biāo)為(0,4),點(diǎn)A在函數(shù)y=﹣(x<0)的圖象上運(yùn)動,且點(diǎn)A是點(diǎn)B的“﹣關(guān)聯(lián)點(diǎn)”,當(dāng)線段BQ最短時,求B點(diǎn)坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com