如圖,在梯形ABCD中,AD//BC,AB=DC,過點D作DE⊥BC,垂足為E,并延長DE至F,使EF=DE.連接BF、AC.
(1)求證:四邊形ABFC是平行四邊形;
(2)如果DE2=BE·CE,求證四邊形ABFC是矩形.
(1)證明見解析;(2)證明見解析.
【解析】
試題分析:(1)連接BD,利用等腰梯形的性質(zhì)得到AC=BD,再根據(jù)垂直平分線的性質(zhì)得到DB=FB,從而得到AC=BF,然后證得AC∥BF,利用一組對邊平行且相等判定平行四邊形;
(2)利用題目提供的等積式和兩直角相等可以證得兩直角三角形相似,得到對應(yīng)角相等,從而得到直角來證明有一個角是直角的平行四邊形是矩形.
試題解析: (1)連接BD
∵梯形ABCD中,AD∥BC,AB=CD
∴AC=BD
∵DE⊥BC,EF=DE
∴BD=BF,CD=CF
∴AC=BF,AB=CF
∴四邊形ABCF是平行四邊形;
(2)∵DE2=BE•CE
∴,
∵∠DEB=∠DEC=90°,
∴△BDE∽△DEC,
∴∠CDE=∠DBE,
∴∠BFC=∠BDC=∠BDE+∠CDE=∠BDE+∠DBE=90°,
∴四邊形ABFC是矩形.
考點: 1.等腰梯形的性質(zhì);2.全等三角形的判定與性質(zhì);3.平行四邊形的判定與性質(zhì);4.相似三角形的判定與性質(zhì).
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
A、3cm | B、7cm | C、3cm或7cm | D、2cm |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com