如圖,在△ABC中,AB=AC,∠B=30°,BC=8,D在邊BC上,E在線段DC上,DE=4,△DEF是等邊三角形,邊DF交邊AB于點M,邊EF交邊AC于點N.
(1)求證:△BMD∽△CNE;
(2)當(dāng)BD為何值時,以M為圓心,以MF為半徑的圓與BC相切?
(3)設(shè)BD=x,五邊形ANEDM的面積為y,求y與x之間的函數(shù)解析式(要求寫出自變量x的取值范圍);當(dāng)x為何值時,y有最大值?并求y的最大值.

【答案】分析:(1)由AB=AC,∠B=30°,根據(jù)等邊對等角,可求得∠C=∠B=30°,又由△DEF是等邊三角形,根據(jù)等邊三角形的性質(zhì),易求得∠MDB=∠NEC=120°,∠BMD=∠B=∠C=∠CNE=30°,即可判定:△BMD∽△CNE;
(2)首先過點M作MH⊥BC,設(shè)BD=x,由以M為圓心,以MF為半徑的圓與BC相切,可得MH=MF=4-x,由(1)可得MD=BD,然后在Rt△DMH中,利用正弦函數(shù),即可求得答案;
(3)首先求得△ABC的面積,繼而求得△BDM的面積,然后由相似三角形的性質(zhì),可求得△CNE的面積,再利用二次函數(shù)的最值問題,即可求得答案.
解答:(1)證明:∵AB=AC,
∴∠B=∠C=30°,
∵△DEF是等邊三角形,
∴∠FDE=∠FED=60°,
∴∠MDB=∠NEC=120°,
∴∠BMD=∠B=∠C=∠CNE=30°,
∴△BMD∽△CNE;

(2)解:過點M作MH⊥BC,
∵以M為圓心,以MH為半徑的圓,則與BC相切,
∴MH=MF,
設(shè)BD=x,
∵△DEF是等邊三角形,
∴∠FDE=60°,
∵∠B=30°,
∴∠BMD=∠FDE-∠B=60°-30°=30°=∠B,
∴DM=BD=x,
∴MH=MF=DF-MD=4-x,
在Rt△DMH中,sin∠MDH=sin60°===,
解得:x=16-8
∴當(dāng)BD=16-8時,以M為圓心,以MF為半徑的圓與BC相切;

(3)解:過點M作MH⊥BC于H,過點A作AK⊥BC于K,
∵AB=AC,
∴BK=BC=×8=4,
∵∠B=30°,
∴AK=BK•tan∠B=4×=,
∴S△ABC=BC•AK=×8×=,
由(2)得:MD=BD=x,
∴MH=MD•sin∠MDH=x,
∴S△BDM=•x•x=x2,
∵△DEF是等邊三角形且DE=4,BC=8,
∴EC=BC-BD-DE=8-x-4=4-x,
∵△BMD∽△CNE,
∴S△BDM:S△CEN=(2=,
∴S△CEN=(4-x)2
∴y=S△ABC-S△CEN-S△BDM=-x2-(4-x)2=-x2+2x+=-(x-2)2+<x<),
當(dāng)x=2時,y有最大值,最大值為
點評:此題考查了相似三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、等邊三角形的性質(zhì)、二次函數(shù)的性質(zhì)以及三角函數(shù)等知識.此題綜合性較強,難度較大,注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案