【題目】如圖,△ABC在平面直角坐標(biāo)系中,∠ACB=90°,AC=BC,A的坐標(biāo)是(0,m)(m<0),點C的坐標(biāo)是(2,0),點B在x軸上方.
(1)如圖1所示,若點B在y軸上,則m的值是 ;
(2)如圖2所示,BC與y軸交于點D.
①若m=﹣6,求點B的坐標(biāo);
②若y軸恰好平分∠BAC,求OD的長.
【答案】(1)-2;(2)①B(﹣4,2);②OD=2﹣2.
【解析】
(1)利用等腰直角三角形的性質(zhì)和判定解答即可;
(2)①如圖2﹣1中,作BH⊥x軸于H.利用余角的性質(zhì)可得∠BCH=∠OAC,然后根據(jù)AAS即可證明△BHC≌△COA,進(jìn)一步利用全等三角形的性質(zhì)即可求出結(jié)果;
②如圖2﹣2中,在OA截取一點F,使得OF=OC,則OF和FC可得,由角平分線的性質(zhì)和三角形的外角性質(zhì)可得△AFC是等腰三角形,于是OA可得,易證△COD∽△AOC,然后利用相似三角形的性質(zhì)即可求出結(jié)果.
解:(1)如圖1中,∵CB=CA,OC⊥AB,∴∠OCB=∠OCA=45°,
∴OA=OC=2,∴A(0,﹣2),∴m=﹣2.
故答案為﹣2;
(2)①如圖2﹣1中,作BH⊥x軸于H.
∵∠AOC=∠BHC=∠ACB=90°,
∴∠BCH+∠ACO=90°,∠ACO+∠OAC=90°,
∴∠BCH=∠OAC,
∵BC=AC,∴△BHC≌△COA(AAS),
∴BH=OC=2,CH=OA=6,
∴OH=CH﹣OC=4,
∴B(﹣4,2);
②如圖2﹣2中,在OA截取一點F,使得OF=OC.
∵OF=OC=2,∠FOC=90°,∴FC=2,∠OFC=∠OCF=45°,
∵AD平分∠CAB,∴∠DAC=∠CAB=22.5°,
∵∠OFC=∠FAC+∠FCA,∴∠FCA=22.5°,
∴∠FAC=∠FCA=22.5°,
∴AF=CF=2,
∴OA=2+2,∴A(0,﹣2﹣2),
∵∠DCO=∠OAC,∠COD=∠AOC=90°,
∴△COD∽△AOC,∴,即,
∴OD=2﹣2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過坐標(biāo)原點和軸上另一點,頂點的坐標(biāo)為.矩形的頂點與點O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3.
(1)求該拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)將矩形以每秒個單位長度的速度從圖1所示的位置沿軸的正方向勻速平行移動,同時一動點也以相同的速度從點出發(fā)向勻速移動,設(shè)它們運動的時間為秒,直線與該拋物線的交點為(如圖2所示).
①當(dāng),判斷點是否在直線上,并說明理由;
②設(shè)P、N、C、D以為頂點的多邊形面積為,試問是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△中,,,點從點出發(fā),沿以每秒的速度向點運動,同時點從點出發(fā),沿以的速度向點運動,設(shè)運動時間為秒
(1)當(dāng)為何值時,.
(2)當(dāng)為何值時,∥.
(3)△能否與△相似?若能,求出的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級開展征文活動,征文主題只能從“愛國”“敬業(yè)”“誠信”“友善”四個主題選擇一個,七年級每名學(xué)生按要求都上交了一份征文,學(xué)校為了解選擇各種征文主題的學(xué)生人數(shù),隨機(jī)抽取了部分征文進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.
(1)求共抽取了多少名學(xué)生的征文;
(2)將上面的條形統(tǒng)計圖補(bǔ)充完整;
(3)在扇形統(tǒng)計圖中,“愛國”主題所對應(yīng)的圓心角是多少;
(4)如果該校七年級共有名學(xué)生,請估計該校選擇以“友善”為主題的七年級學(xué)生有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A,點C在反比例函數(shù)y=(k>0,x>0)的圖象上,AB⊥x軸于點B,OC交AB于點D,若CD=OD,則△AOD與△BCD的面積比為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD的上方作等邊三角形ADE,連接BE,CE.
(1)求證:△ABE≌△DCE;
(2)連接AC,設(shè)AC與BE交于點F,求∠BFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“傳箴言”活動中,某班團(tuán)支部對該班全體團(tuán)員在一個月內(nèi)所發(fā)箴言條數(shù)的情況進(jìn)行了統(tǒng)計,并制成了如圖所示的兩幅不完整的統(tǒng)計圖:
(1)求該班團(tuán)員在這一個月內(nèi)所發(fā)箴言的平均條數(shù)是多少?并將該條形統(tǒng)計圖補(bǔ)充完整;
(2)如果發(fā)了3條箴言的同學(xué)中有兩位男同學(xué),發(fā)了4條箴言的同學(xué)中有三位女同學(xué).現(xiàn)要從發(fā)了3條箴言和4條箴言的同學(xué)中分別選出一位參加該校團(tuán)委組織的“箴言”活動總結(jié)會,請你用列表法或樹狀圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,我們不妨把橫坐標(biāo)和縱坐標(biāo)相等的點叫“夢之點”,例如點(1,1),(﹣2,﹣2),,…都是“夢之點”,顯然“夢之點”有無數(shù)個.
(1)若點P(2,m)是反比例函數(shù)y=(n為常數(shù),n≠0)的圖象上的“夢之點”,求這個反比例函數(shù)的解析式;
(2)函數(shù)y=3kx+s﹣1(k,s為常數(shù))的圖象上存在“夢之點”嗎?若存在,請求出“夢之點”的坐標(biāo),若不存在,說明理由;
(3)若二次函數(shù)y=ax2+bx+1(a,b是常數(shù),a>0)的圖象上存在兩個“夢之點”A(x1,x1),B(x2,x2),且滿足﹣2<x1<2,|x1﹣x2|=2,令t=b2﹣b+,試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2+(2m﹣1)x﹣2m(m>0.5)的最低點的縱坐標(biāo)為﹣4.
(1)求拋物線的解析式;
(2)如圖1,拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,D為拋物線上的一點,BD平分四邊形ABCD的面積,求點D的坐標(biāo);
(3)如圖2,平移拋物線y=x2+(2m﹣1)x﹣2m,使其頂點為坐標(biāo)原點,直線y=﹣2上有一動點P,過點P作兩條直線,分別與拋物線有唯一的公共點E、F(直線PE、PF不與y軸平行),求證:直線EF恒過某一定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com