(2000•荊門)如圖,⊙O中,=40°,則∠B+∠D=    度.
【答案】分析:由圖可知:、、正好構(gòu)成整個(gè)圓,即它們的度數(shù)和為360°,由此可得=320°,那么兩段弧所對的圓心角的度數(shù)和也為320°,根據(jù)圓周角定理即可求得∠B+∠D的值.
解答:解:∵=40°,
=360°-40°=320°;
∴∠B+∠D=160°.
點(diǎn)評:此題綜合考查了圓心角、弧的關(guān)系,及圓周角定理的應(yīng)用;能夠正確的求得∠B、∠D所對弧的度數(shù)是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《圖形的相似》(02)(解析版) 題型:解答題

(2000•荊門)如圖在直角坐標(biāo)系xOy中,A、B是x軸上兩點(diǎn),以AB為直徑的圓與y軸交于點(diǎn)C,設(shè)A、B、C的拋物線的解析式為y=且方程=0的兩根的倒數(shù)和為
(1)求n的值;
(2)求m的值和A、B、C三點(diǎn)的坐標(biāo);
(3)點(diǎn)P、Q分別從A、O兩點(diǎn)同時(shí)出發(fā),以相同的速度沿AB、OC向B、C運(yùn)動(dòng),連接PQ并延長,與BC交于點(diǎn)M,設(shè)AP=k,問是否存在這樣的k值,使以P、B、M為頂點(diǎn)的三角形與△ABC相似?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2000•荊門)如圖在直角坐標(biāo)系xOy中,A、B是x軸上兩點(diǎn),以AB為直徑的圓與y軸交于點(diǎn)C,設(shè)A、B、C的拋物線的解析式為y=且方程=0的兩根的倒數(shù)和為
(1)求n的值;
(2)求m的值和A、B、C三點(diǎn)的坐標(biāo);
(3)點(diǎn)P、Q分別從A、O兩點(diǎn)同時(shí)出發(fā),以相同的速度沿AB、OC向B、C運(yùn)動(dòng),連接PQ并延長,與BC交于點(diǎn)M,設(shè)AP=k,問是否存在這樣的k值,使以P、B、M為頂點(diǎn)的三角形與△ABC相似?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年湖北省荊門市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2000•荊門)如圖在直角坐標(biāo)系xOy中,A、B是x軸上兩點(diǎn),以AB為直徑的圓與y軸交于點(diǎn)C,設(shè)A、B、C的拋物線的解析式為y=且方程=0的兩根的倒數(shù)和為
(1)求n的值;
(2)求m的值和A、B、C三點(diǎn)的坐標(biāo);
(3)點(diǎn)P、Q分別從A、O兩點(diǎn)同時(shí)出發(fā),以相同的速度沿AB、OC向B、C運(yùn)動(dòng),連接PQ并延長,與BC交于點(diǎn)M,設(shè)AP=k,問是否存在這樣的k值,使以P、B、M為頂點(diǎn)的三角形與△ABC相似?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《圓》(07)(解析版) 題型:解答題

(2000•荊門)如圖,以Rt△ABC的直角邊BC為直徑畫半圓,交斜邊AB于D,若AC=,BD=,求圖中陰影部分面積(π取3.14,取1.73,結(jié)果精到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年湖北省荊門市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2000•荊門)如圖,A點(diǎn)是半圓上一個(gè)三等分點(diǎn),B點(diǎn)是弧AN的中點(diǎn),P點(diǎn)是直徑MN上一動(dòng)點(diǎn),⊙O的半徑為1,則AP+BP的最小值為( )

A.1
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案