已知:△ABC的三邊長(zhǎng)為a、b、c,且滿足:(1)a2=(b+c)(b-c),(2)a2+b2-12a-16b+100=0,求c的值.

答案:
解析:

  解:∵a2(bc)(bc),∴a2b2c2

  ∴a2c2b2,因此△ABC是直角三角形,且b是斜邊.

  ∵a2b212a16b1000

  配方得(a212a36)(b216b64)0,

  即(a6)2(b8)20

  ∴a60b80

  ∴a6b8

  在RtABC

  c


提示:

思維配方法在數(shù)學(xué)領(lǐng)域有著廣泛的應(yīng)用,如(2)中有兩個(gè)未知數(shù),卻只有一個(gè)方程,通常很難求出a、b的值.但在特殊情況下(即左邊能配成兩個(gè)完全平方式的和,而右邊為0時(shí))卻能求a6,b8.若△ABCRt△,則由勾股定理可求c,因此應(yīng)由(1)來(lái)判斷△ABC的形狀.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠BCA=90°,CD是高,已知Rt△ABC的三邊長(zhǎng)都是整數(shù)且BD=113,求Rt△BCD與Rt△ACD的周長(zhǎng)之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在銳角△ABC中,∠A,∠B,∠C的對(duì)邊分別是a,b,c.如圖所示,過(guò)C作CD⊥AB于D,則co精英家教網(wǎng)sA=
AD
b
,
即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD2=AC2-AD2=BC2-BD2
∴b2-b2cos2A=a2-(c-bcosA)2
整理得:a2=b2+c2-2bccosA        (1)
同理可得:b2=a2+c2-2accosB      (2)
c2=a2+b2-2abcosC               (3)
這個(gè)結(jié)論就是著名的余弦定理,在以上三個(gè)等式中有六個(gè)元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個(gè)元素,可求出其余的另外三個(gè)元素.
如:在銳角△ABC中,已知∠A=60°,b=3,c=6,
則由(1)式可得:a2=32+62-2×3×6cos60°=27
∴a=3
3
,∠B,∠C則可由式子(2)、(3)分別求出,在此略.
根據(jù)以上閱讀理解,請(qǐng)你試著解決如下問(wèn)題:
已知銳角△ABC的三邊a,b,c分別是7,8,9,求∠A,∠B,∠C的度數(shù).(保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

3、已知,△ABC的三邊分別為a,b,c,則下列條件不能判斷△ABC是直角三角形的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知Rt△ABC的三邊長(zhǎng)分別為a,b,c,且a和b滿足
a-3
+b2-4b+4=0

(1)求a、b的長(zhǎng);
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知Rt△ABC的三邊長(zhǎng)都是整數(shù),而且都不超過(guò)1999,其中∠A=90°,BC+AB=2AC,則一共有
399
399
個(gè)這樣的△ABC.

查看答案和解析>>

同步練習(xí)冊(cè)答案