若不等式組無解,則m的取值范圍是( ).

A.m>3 B.m<3 C.m≥3 D.m≤3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年河北省滄州市中考二模數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,某一時刻太陽光從教室窗戶射入室內(nèi),與地面的夾角∠BPC為30°,窗戶的一部分在教室地面所形成的影長PE為3.5米,窗戶的高度AF為2.5米.求窗外遮陽蓬外端一點D到教室窗戶上椽的距離AD.(結(jié)果精確0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2015-2016學(xué)年湖北省等七年級上第一次聯(lián)考數(shù)學(xué)試卷(解析版) 題型:填空題

在數(shù)8.3,-4,-0. 8,- ,0.9,0,- ,-|-2 4 |中,有______個數(shù)是正數(shù),有______個數(shù)是非負數(shù),有_________個數(shù)不是整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年山東省濰坊市中考三模數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,在扇形OAB中,∠AOB=90°,半徑OA=6.將扇形OAB沿過點B的直線折疊.點 O恰好落在延長線上點D處,折痕交OA于點C,整個陰影部分的面積 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年山東省濰坊市中考三模數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,將放置于平面直角坐標(biāo)系中的三角板AOB繞O點順時針旋轉(zhuǎn)90°得△A′OB′.已知∠AOB=30°,∠B=90°,AB=1,則B′點的坐標(biāo)為( ).

A.( , ) B.() C.(,) D.(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年浙江省杭州市5月中考模擬數(shù)學(xué)試卷(解析版) 題型:解答題

在Rt△ABC中,∠ACB=90°,tan∠BAC=.點D在邊AC上(不與A,C重合),連接BD,F(xiàn)為BD中點.

(1)若過點D作DE⊥AB于E,連接CF、EF、CE,如圖1.設(shè)CF=kEF,則k= ;

(2)若將圖1中的△ADE繞點A旋轉(zhuǎn),使得D、E、B三點共線,點F仍為BD中點,如圖2所示.求證:BE-DE=2CF;

(3)若BC=6,點D在邊AC的三等分點處,將線段AD繞點A旋轉(zhuǎn),點F始終為BD中點,求線段CF長度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年浙江省杭州市5月中考模擬數(shù)學(xué)試卷(解析版) 題型:填空題

已知,如圖直線l的解析式為y=x+4,交x、y軸分別于A、B兩點,點M(-1,3)在直線l上,O為原點.

(1)點N在x軸的負半軸上,且∠MNO=60°,則AN= ;

(2)點P在y軸上,線段PM繞點P旋轉(zhuǎn)60°得到線段PQ,且點Q恰好在直線l上,則點P的坐標(biāo)為 或 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年山東省威海市乳山市中考一模數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點D,連接AD.過點D作DE⊥AC,垂足為點E.

(1)求證:DE是⊙O的切線;

(2)求證:BD2=AB•CE.

【答案】(1)證明見解析;(2)證明見解析.

【解析】

試題分析:(1)連接OD,AB為⊙0的直徑得∠ADB=90°,由AB=AC,根據(jù)等腰三角形性質(zhì)得AD平分BC,即DB=DC,則OD為△ABC的中位線,所以O(shè)D∥AC,而DE⊥AC,則OD⊥DE,然后根據(jù)切線的判定方法即可得到結(jié)論;

(2)由∠B=∠C,∠CED=∠BDA=90°,得出△DEC∽△ADB,得出,從而求得BD•CD=AB•CE,由BD=AD,即可求得BD2=AB•CE.

試題解析:(1)證明:連接OD,如圖,

∵AB為⊙0的直徑,

∴∠ADB=90°,

∴AD⊥BC,

∵AB=AC,

∴AD平分BC,即DB=DC,

∵OA=OB,

∴OD為△ABC的中位線,

∴OD∥AC,

∵DE⊥AC,

∴OD⊥DE,

∴DE是⊙0的切線;

(2)證明:∵∠B=∠C,∠CED=∠BDA=90°,

∴△DEC∽△ADB,

,

∴BD•CD=AB•CE,

∵BD=AD,

∴BD2=AB•CE.

考點:1.切線的判定;2.相似三角形的判定與性質(zhì).

【題型】解答題
【適用】一般
【標(biāo)題】2015屆山東省威海市乳山市中考一模數(shù)學(xué)試卷(帶解析)
【關(guān)鍵字標(biāo)簽】
【結(jié)束】
 

如圖1,將一個直角三角板的直角頂點P放在正方形ABCD的對角線BD上滑動,并使其一條直角邊始終經(jīng)過點A,另一條直角邊與BC相交于點E.

(1)求證:PA=PE;

(2)若將(1)中的正方形變?yōu)榫匦,其余條件不變(如圖2),且AD=10,DC=8,求AP:PE;

(3)在(2)的條件下,當(dāng)P滑動到BD的延長線上時(如圖3),請你直接寫出AP:PE的比值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年湖南省邵陽市邵陽縣中考二模數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,⊙O是△ABC的外接圓,AD是⊙O的直徑,EA是⊙O的切線.若∠EAC=120°,則∠ABC的度數(shù)是( )

A.80° B.70° C.60° D.50°

查看答案和解析>>

同步練習(xí)冊答案