如圖,已知△ABC中,AB=BC,以AB為直徑的圓O交AC于點(diǎn)D,過點(diǎn)D作⊥DE⊥BC,垂足為E,連接OE.若CD=
3
,∠ACB=30°,
(1)求證:DE是⊙O的切線;
(2)求OE的長.
分析:(1)連接OD、BD,求出BD⊥AC,瑞成AD=DC,根據(jù)三角形的中位線得出OD∥BC,推出OD⊥DE,根據(jù)切線的判定推出即可;
(2)解直角三角形求出BC、BD,求出AB得出OD,根據(jù)三角形的面積公式求出高DE,在△ODE中,根據(jù)勾股定理求出OE即可.
解答:(1)證明:連接OD、BD,
∵AB是⊙O直徑,
∴∠ADB=90°,
∴BD⊥AC,
∵AB=BC,
∴D為AC中點(diǎn),
∵OA=OB,
∴OD∥BC,
∵DE⊥BC,
∴DE⊥OD,
∵OD為半徑,
∴DE是⊙O的切線;

(2)解:∵CD=
3
,∠ACB=30°,
∴cos30°=
CD
BC
,
∴BC=2,
∴BD=
1
2
BC=1,
∵AB=BC,
∴∠A=∠C=30°,
∵BD=1,
∴AB=2BD=2,
∴OD=1,
在Rt△CDB中,由三角形面積公式得:BC×DE=BD×CD,
3
=2DE,
DE=
3
2
,
在Rt△ODE中,由勾股定理得:OE=
12+(
3
2
)
2
=
7
2
點(diǎn)評:本題考查了切線的判定,等腰三角形的性質(zhì),三角形的面積公式,含30度角的直角三角形,解直角三角形等知識點(diǎn)的綜合運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC中,AB=AC,E、F分別在AB、AC上且AE=CF.
求證:EF≥
12
BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,P是AB上一點(diǎn),連接CP,以下條件不能判定△ACP∽△ABC的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•梓潼縣一模)如圖,已知△ABC中,∠C=90°,AC=4,BC=3,則sinA=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,BC=8,BC邊上的高h(yuǎn)=4,D為BC上一點(diǎn),EF∥BC交AB于E,交AC于F(EF不過A、B),設(shè)E到BC的距離為x,△DEF的面積為y,那么y關(guān)于x的函數(shù)圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,AB=AC,D是BC中點(diǎn),則下列結(jié)論不正確的是(  )

查看答案和解析>>

同步練習(xí)冊答案