已知⊙O1與⊙O2兩圓半徑分別為2和6,且圓心距為7,則兩圓的位置關系是_____.
相交

試題分析:若兩圓的半徑分別為R和r,且,圓心距為d:外離,則;外切,則;相交,則;內(nèi)切,則;內(nèi)含,則
∵兩圓半徑分別為2和6,且圓心距為7

∴兩圓的位置關系是相交.
點評:本題屬于基礎應用題,只需學生熟練掌握圓與圓的位置關系,即可完成.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知P是⊙O外一點,PO交圓O于點C,OC=CP=2,弦AB⊥OC,劣弧AB的度數(shù)為120°,連接PB.

(1)求BC的長;
(2)求證:PB是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如果兩圓的半徑長分別為6和2,圓心距為3,那么這兩圓的位置關系是
A.外離B.相切C.相交D.內(nèi)含

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在△ABC中,AB為⊙O的直徑,∠B = 60°,∠BOD = 100°,則∠C的度數(shù)為______________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,⊙O的半徑為2,點O到直線的距離為3,點P是直線上的一個動點,PB切⊙O于點B,則PB的最小值是(  )
A.B.C. 3D.2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.

(1)求證:PC是⊙O的切線;
(2)求∠P的度數(shù);
(3)點M是弧AB的中點,CM交AB于點N,AB=4,求線段BM、CM及弧BC所圍成的圖形面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,△ABC內(nèi)接于⊙O,D為線段AB的中點,延長OD交⊙O于點E, 連接AE,BE,則下列五個結(jié)論:①AB⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C,⑤,正確結(jié)論的個數(shù)是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠C=90°,∠ABC的平分線BD交AC于點D,DE⊥BD交AB于點E,設⊙O是△BDE的外接圓.

(1)求證:AC是⊙O的切線;
(2)求證:.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,⊙O中,直徑AB⊥弦CD于E,若AB=26,CD=24,則tan∠OCE=   

查看答案和解析>>

同步練習冊答案