如圖①,在△ABC中,已知AC=27,AB的垂直平分線交AB于點D,交AC于點E,
(1)如果△BCE的周長等于50,∠BEC=88°,求BC的長及∠A的度數(shù);
(2)如圖②,在Rt△ABC中,∠C=90°,AB的垂直平分線交BC邊于點E,若BE=2,∠B=15°.求AC的長.
精英家教網(wǎng)
分析:(1)根據(jù)線段垂直平分線的性質(zhì),得AE=BE,則BC=△BCE的周長-(BE+CE)=△BCE的周長-AC;根據(jù)三角形外角的性質(zhì)和等腰三角形的性質(zhì),求得∠A的度數(shù);
(2)根據(jù)線段垂直平分線的性質(zhì),得AE=BE=2,則∠BAE=∠B=15°;根據(jù)三角形外角的性質(zhì),得∠AEC=∠B+∠BAE=30°,再根據(jù)直角三角形的性質(zhì)即可求得AC的長.
解答:解:(1)∵AB的垂直平分線交AB于點D,交AC于點E,
∴AE=BE,
∴∠A=∠ABE,BE+CE=AC=27.
∴∠A=
1
2
∠BEC=44°,BC=50-27=23.

(2)∵AB的垂直平分線交BC邊于點E,
∴AE=BE=2,
∴∠BAE=∠B=15°,
∴∠AEC=∠B+∠BAE=30°,
∴AC=
1
2
AE=1.
點評:此題綜合運用了線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì)、三角形的外角的性質(zhì)以及直角三角形的性質(zhì).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知:如圖1,在△ABC中,AB=AC,點D是邊BC的中點.以BD為直徑作圓O,交邊AB于點P,連接PC,交AD于點E.
(1)求證:AD是圓O的切線;
(2)當∠BAC=90°時,求證:
PE
CE
=
1
2
;
(3)如圖2,當PC是圓O的切線,E為AD中點,BC=8,求AD的長.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

我們給出如下定義:有一組相鄰內(nèi)角相等的四邊形叫做等鄰角四邊形.請解答下列問題:
(1)寫出一個你所學過的特殊四邊形中是等鄰角四邊形的圖形的名稱;
(2)如圖1,在△ABC中,AB=AC,點D在BC上,且CD=CA,點E、F分別為BC、AD的中點,連接EF并延長交AB于點G.求證:四邊形AGEC是等鄰角四邊形;
(3)如圖2,若點D在△ABC的內(nèi)部,(2)中的其他條件不變,EF與CD交于點H,圖中是否存在等鄰角四邊形,若存在,指出是哪個四邊形,不必證明;若不存在,請說精英家教網(wǎng)明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)已知:如圖1,在四邊形ABCD中,BC⊥CD,∠ACD=∠ADC.求證:AB+AC>
BC2+CD2

(2)已知:如圖2,在△ABC中,AB上的高為CD,試判斷(AC+BC)2與AB2+4CD2之間的大小關(guān)系,并證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,AD和AE分別是△ABC的BC邊上的高和中線,點D是垂足,點E是BC的中點,規(guī)定:λA=
DE
BD
.如圖2,在△ABC中,∠C=90°,∠A=30°,λC=
1
3
1
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在△ABC中,∠BAC的平分線AD與∠BCA的平分線CE交于點O.
(1)求證:∠AOC=90°+
12
∠ABC;
(2)當∠ABC=90°時,且AO=3OD(如圖2),判斷線段AE,CD,AC之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

同步練習冊答案