(2013•泉州質(zhì)檢)在平面直角坐標(biāo)系中,A、B兩點(diǎn)的坐標(biāo)分別為A(3,2),B(1,5).
(1)若點(diǎn)P的坐標(biāo)為(0,m),當(dāng)m=
17
4
17
4
時(shí),△PAB的周長(zhǎng)最短;
(2)若點(diǎn)C、D的坐標(biāo)分別為(0,a)、(0,a+4),則當(dāng)a=
5
4
5
4
時(shí),四邊形ABDC的周長(zhǎng)最短.
分析:(1)如圖1,AB的長(zhǎng)度一定,要使△PAB的周長(zhǎng)取最小值,需要滿足PA+PB取最小值,利用軸對(duì)稱的性質(zhì)確定點(diǎn)P的位置,求出A'B的函數(shù)解析式后即可得出點(diǎn)P的坐標(biāo);
(2)如圖2,作點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)A′,則A′的坐標(biāo)為(-3,2),把A′向上平移4個(gè)單位得到點(diǎn)B'(-3,6),連接BB′,與y軸交于點(diǎn)D,易得四邊形A′B′DC為平行四邊形,得到CA′=DB′=CA,則AC+BD=BB′,根據(jù)兩點(diǎn)之間線段最短得到此時(shí)(AC+BD)最小,即四邊形ABDC的周長(zhǎng)最短.然后用待定系數(shù)法求出直線BB′的解析式y(tǒng)=4x-17,易得D點(diǎn)坐標(biāo)為
(0,
17
4
),則有a+4=
17
4
,即可求出a的值.
解答:解:(1)如圖,過點(diǎn)A作關(guān)于y軸的對(duì)稱點(diǎn)A',連接A'B,則A'B與y軸的交點(diǎn)即為點(diǎn)P的位置,
∵點(diǎn)A的坐標(biāo)為(3,2),
∴點(diǎn)A'的坐標(biāo)為(-3,2),
設(shè)直線A'B的解析式為y=kx+b,則
-3k+b=2
k+b=5
,
解得
k=
3
4
b=
17
4
,
即直線A'B的解析式為y=
3
4
x+
17
4
,
∵點(diǎn)P的坐標(biāo)為(0,m),且點(diǎn)P在直線A′B上,
∴m=
17
4


(2)解:如圖2,作點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)A′,則A′的坐標(biāo)為(-3,2),把A′向上平移4個(gè)單位得到點(diǎn)B'(-3,6),連接BB′,與y軸交于點(diǎn)D,
∴CA′=CA,
又∵點(diǎn)C、D的坐標(biāo)分別為(0,a)、(0,a+4),
∴CD=4,
∴A′B′∥CD,
∴四邊形A′B′DC為平行四邊形,
∴CA′=DB′,
∴CA=DB′,
∴AC+BD=BB′,此時(shí)AC+BD最小,
而CD與AB的長(zhǎng)一定,
∴此時(shí)四邊形ABDC的周長(zhǎng)最短.
易得直線BB′的解析式為y=-
1
4
x+
21
4
,
∵點(diǎn)D在直線BB′上,且D(0,a+4),
∴a+4=
21
4

解得a=
5
4

故答案是:
17
4
;
5
4
點(diǎn)評(píng):本題考查了軸對(duì)稱-最短路線問題:通過對(duì)稱,把兩條線段的和轉(zhuǎn)化為一條線段,利用兩點(diǎn)之間線段最短解決問題.也考查了坐標(biāo)變換以及待定系數(shù)法求一次函數(shù)的解析式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•泉州質(zhì)檢)計(jì)算:a3•a4等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•泉州質(zhì)檢)把不等式組
2x+4>2
x-1≤0
的解集在數(shù)軸上表示出來,正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•泉州質(zhì)檢)一組數(shù)據(jù)35、38、37、36、37、36、35、36的眾數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•泉州質(zhì)檢)若n邊形的內(nèi)角和是720°,則n的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•泉州質(zhì)檢)如圖,由6個(gè)形狀相同的小正方體搭成的一個(gè)幾何體,此幾何體的左視圖是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案