【題目】(本題12分)如圖1,在平面直角坐標(biāo)系中,四邊形OABC各頂點的坐標(biāo)分別O(0,0),A(3, ),B(9,5 ),C(14,0).動點P與Q同時從O點出發(fā),運動時間為t秒,點P沿OC方向以1單位長度/秒的速度向點C運動,點Q沿折線OAABBC運動,在OA,AB,BC上運動的速度分別為3, , (單位長度/秒)﹒當(dāng)P,Q中的一點到達C點時,兩點同時停止運動.

(1)求AB所在直線的函數(shù)表達式.
(2)如圖2,當(dāng)點Q在AB上運動時,求△CPQ的面積S關(guān)于t的函數(shù)表達式及S的最大值.
(3)在P,Q的運動過程中,若線段PQ的垂直平分線經(jīng)過四邊形OABC的頂點,求相應(yīng)的t值.

【答案】
(1)

解:把A(3,3 ),B(9,5 )代入y=kx+b,

;解得: ;

∴y= x+2 ;


(2)

解:在△PQC中,PC=14-t,PC邊上的高線長為 ;

∴當(dāng)t=5時,S有最大值;最大值為 .


(3)

解: a.當(dāng)0<t≤2時,線段PQ的中垂線經(jīng)過點C(如圖1);

可得方程

解得:,(舍去),此時t=.

b.當(dāng)2<t≤6時,線段PQ的中垂線經(jīng)過點A(如圖2)

可得方程,

解得:;(舍去),此時;

c.當(dāng)6<t≤10時,

①線段PQ的中垂線經(jīng)過點C(如圖3)

可得方程14-t=25-;

解得:t=.

②線段PQ的中垂線經(jīng)過點B(如圖4)

可得方程;

解得,(舍去);

此時;

綜上所述:t的值為,,,.


【解析】(1)用待定系數(shù)法求直線AB方程即可。
(2)根據(jù)三角形的面積公式得到關(guān)于t的二次三項式,再由二次函數(shù)圖像的性質(zhì)求出S的最大值即可。
(3)根據(jù)t的值分情況討論,依題意列出不同的方程從而求出t的值。
【考點精析】利用確定一次函數(shù)的表達式和二次函數(shù)的最值對題目進行判斷即可得到答案,需要熟知確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法;如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當(dāng)x=-b/2a時,y最值=(4ac-b2)/4a.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,則下列結(jié)論中不正確的是(  )

A. 當(dāng)AB=BC時,四邊形ABCD是菱形

B. 當(dāng)ACBD時,四邊形ABCD是菱形

C. 當(dāng)∠ABC=90°時,四邊形ABCD是矩形

D. 當(dāng)AC=BD時,四邊形ABCD是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,第一個正方形的頂點A1(﹣1,1),B1(1,1);第二個正方形的頂點A2(﹣3,3),B2(3,3);第三個正方形的頂點A3(﹣6,6),B3(6,6)按順序取點A1,B2,A3,B4,A5,B6,則第12個點應(yīng)取點B12,其坐標(biāo)為( 。

A. (12,12) B. (78,78) C. (66,66) D. (55,55)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+2與x軸交于點A(1,0)和B(4,0).

(1)求拋物線的解析式;
(2)若拋物線的對稱軸交x軸于點E,點F是位于x軸上方對稱軸上一點,F(xiàn)C∥x軸,與對稱軸右側(cè)的拋物線交于點C,且四邊形OECF是平行四邊形,求點C的坐標(biāo);
(3)在(2)的條件下,拋物線的對稱軸上是否存在點P,使△OCP是直角三角形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y1=﹣ x﹣1與反比例函數(shù)y2= 的圖象交于點A(﹣4,m).
(1)觀察圖象,在y軸的左側(cè),當(dāng)y1>y2時,請直接寫出x的取值范圍;
(2)求出反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題10分) 如圖1,將△ABC紙片沿中位線EH折疊,使點A的對稱點D落在BC邊上,再將紙片分別沿等腰△BED和等腰△DHC的底邊上的高線EF,HG折疊,折疊后的三個三角形拼合形成一個矩形.類似地,對多邊形進行折疊,若翻折后的圖形恰能拼合成一個無縫隙、無重疊的矩 形,這樣的矩形稱為疊合矩形.


(1)將□ABCD紙片按圖2的方式折疊成一個疊合矩形AEFG,則操作形成的折痕分別是線段 , ;S矩形AEFG:S□ABCD=
(2)ABCD紙片還可以按圖3的方式折疊成一個疊合矩形EFGH,若EF=5,EH=12,求AD的長.
(3)如圖4,四邊形ABCD紙片滿足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10.小明把該紙片折疊,得到疊合正方形.請你幫助畫出疊合正方形的示意圖,并求出AD,BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題6分)如圖,在平面直角坐標(biāo)系中,△ABC各頂點的坐標(biāo)分別為A(2,2),B(4,1),C(4,4).

(1)作出 ABC關(guān)于原點O成中心對稱的 A1B1C1.
(2)作出點A關(guān)于x軸的對稱點A'.若把點A'向右平移a個單位長度后落在 A1B1C1的內(nèi)部(不包括頂點和邊界),求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,BD、BE分別是高和角平分線,點F在CA的延長線上,F(xiàn)H⊥BE,交BD于點G,交BC于點H;下列結(jié)論:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC-∠C;④∠BGH=∠ABE+∠C,其中正確的結(jié)論有___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點F、BE、C在同一直線上,并且BF=CE,∠ABC=∠DEF.能否由上面的已知條件證明△ABC≌△DEF?如果能,請給出證明;如果不能,請從下列三個條件中選擇一個合適的條件,添加到已知條件中,使△ABC≌△DEF,并給出證明.

提供的三個條件是:①AB=DE;②AC=DF;③AC∥DF

查看答案和解析>>

同步練習(xí)冊答案