【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時出發(fā),各自到達(dá)終點(diǎn)后停止行駛。設(shè)慢車行駛的時間為x(h),兩車之間的距離為y(km),圖中的折線表示y與x之間的函數(shù)關(guān)系,則兩車相遇之后又經(jīng)過___________小時,兩車相距720km.
【答案】
【解析】
先求出快車和慢車的車速,根據(jù)圖形信息確定h兩車相遇,第5小時,快車到達(dá)終點(diǎn)停止運(yùn)動,此時兩車相距450km,因此只要慢車再走270km輛車就會相距720km.求出慢車所用的總時間與相遇時的時間相減即可.
解:由圖可知A(0,900),B(,0)
∴直線AB解析式為:y=-270x+900,
由題可知AB與BC的速度不變,
∴設(shè)BC段的函數(shù)解析式為y=270x+b,
代入B(,0),得b=-900,
∴直線BC解析式為:y=270x-900,
∴C(5,450)
∴慢車的速度 4505=90km/h,
快車的速度90(5-)=180km/h,
∴第5小時,快車到達(dá)終點(diǎn)停止運(yùn)動,此時兩車相距450km,
∴72090=8,即第8小時兩車相距720km,
∴8-,
故答案是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2﹣4ax+4a﹣3(a≠0)的頂點(diǎn)為A.
(1)求頂點(diǎn)A的坐標(biāo);
(2)過點(diǎn)(0,5)且平行于x軸的直線l,與拋物線y=ax2﹣4ax+4a﹣3(a≠0)交于B,C兩點(diǎn). ①當(dāng)a=2時,求線段BC的長;
②當(dāng)線段BC的長不小于6時,直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分線,BD的延長線垂直于過C點(diǎn)的直線于E,直線CE交BA的延長線于F.求證:BD=2CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠A=36°,AB的中垂線DE交AC于D,交AB于E,下述結(jié)論:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周長等于AB+BC;(4)D是AC中點(diǎn).其中正確的命題序號是________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACB和△ECD都是等邊三角形,點(diǎn)A、D、E在同一直線上,連接BE.
(1)求證:AD=BE;
(2)求∠AEB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線AB、CD、EF相交于點(diǎn)O,OG⊥CD,∠BOD=36°.
(1)求∠AOG的度數(shù);
(2)若OG是∠AOF的平分線,那么OC是∠AOE的平分線嗎?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)E、F在直線AB上,點(diǎn)G在線段CD上,ED與FG交于點(diǎn)H,∠C=∠EFG,∠CED=∠GHD.
(1)求證:CE∥GF;
(2)試判斷∠AED與∠D之間的數(shù)量關(guān)系,并說明理由;
(3)若∠EHF=80°,∠D=30°,求∠AEM的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△ABC 和等邊△BPE,點(diǎn) P 在 BC 的延長線上,EC 的延長線交 AP 于點(diǎn) M,連接 BM;下列結(jié)論:①AP=CE;②∠PME=60°;③BM 平分∠AME;④AM+MC=BM,其中正確的有____________________(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(探究)如圖①,∠AFH和∠CHF的平分線交于點(diǎn)O,EG經(jīng)過點(diǎn)O且平行于FH,分別與AB、CD交于點(diǎn)E、G.
(1)若∠AFH=60°,∠CHF=50°,則∠EOF=_____度,∠FOH=_____度.
(2)若∠AFH+∠CHF=100°,求∠FOH的度數(shù).
(拓展)如圖②,∠AFH和∠CHI的平分線交于點(diǎn)O,EG經(jīng)過點(diǎn)O且平行于FH,分別與AB、CD交于點(diǎn)E、G.若∠AFH+∠CHF=α,直接寫出∠FOH的度數(shù).(用含a的代數(shù)式表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com