【題目】如圖,已知是等邊三角形的外接圓,點(diǎn)在圓上,在的延長線上有一點(diǎn),使,交于.
(1)求證:是的切線;
(2)求證:.
【答案】(1)證明見解析;(2)證明見解析.
【解析】(1)根據(jù)等邊三角形的性質(zhì)可得:∠OAC=30°,∠BCA=60°,證明∠OAE=90°,可得AE是⊙O的切線;
(2)先根據(jù)等邊三角形性質(zhì)得:AB=AC,∠BAC=∠ABC=60°,由四點(diǎn)共圓的性質(zhì)得:∠ADF=∠ABC=60°,得△ADF是等邊三角形,證明△BAD≌△CAF,可得結(jié)論.
(1)連接OD,
∵⊙O是等邊三角形ABC的外接圓,
∴∠OAC=30°,∠BCA=60°,
∵AE∥BC,
∴∠EAC=∠BCA=60°,
∴∠OAE=∠OAC+∠EAC=30°+60°=90°,
∴AE是⊙O的切線;
(2)∵△ABC是等邊三角形,
∴AB=AC,∠BAC=∠ABC=60°,
∵A、B、C、D四點(diǎn)共圓,
∴∠ADF=∠ABC=60°,
∵AD=DF,
∴△ADF是等邊三角形,
∴AD=AF,∠DAF=60°,
∴∠BAC+∠CAD=∠DAF+∠CAD,
即∠BAF=∠CAF,
在△BAD和△CAF中,
,
∴△BAD≌△CAF,
∴BD=CF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一兒童服裝商店在銷售中發(fā)現(xiàn):某品牌童裝平均每天可售出20件,每件盈利40元.為了迎接“六·一”兒童節(jié),商店決定采取適當(dāng)?shù)慕祪r(jià)措施,擴(kuò)大銷售量,增加盈利,盡快減少庫存.經(jīng)市場調(diào)查發(fā)現(xiàn):如果每件童裝降價(jià)1元,那么平均每天就可多售出2件.要想平均每天銷售這種童裝上盈利1200元,那么每件童裝應(yīng)降價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
①8+(﹣10)+(﹣2)﹣(﹣5)
②2﹣3﹣5﹣|﹣3|
③(﹣1)+1.25+(﹣8.5)+10
④()×(﹣12)
⑤(﹣199)×5(用簡便方法計(jì)算)
⑥10×(﹣)﹣2×+(﹣3)×(﹣)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P為拋物線y=x2上一動(dòng)點(diǎn).
(1)若拋物線y=x2是由拋物線y=(x+2)2﹣1通過圖象平移得到的,請(qǐng)寫出平移的過程;
(2)若直線l經(jīng)過y軸上一點(diǎn)N,且平行于x軸,點(diǎn)N的坐標(biāo)為(0,﹣1),過點(diǎn)P作PM⊥l于M.
①問題探究:如圖一,在對(duì)稱軸上是否存在一定點(diǎn)F,使得PM=PF恒成立?若存在,求出點(diǎn)F的坐標(biāo):若不存在,請(qǐng)說明理由.
②問題解決:如圖二,若點(diǎn)Q的坐標(biāo)為(1.5),求QP+PF的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖,先填空后證明.
已知: ∠1+∠2=180° 求證:a∥b.
證明:∵ ∠1=∠3(_____),∠1+∠2=180°(_____),
∴ ∠3+∠2=180°(______).
∴ a∥b(_____).
請(qǐng)你再寫出一種證明方法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在圖1、圖2的網(wǎng)格中,每個(gè)小四邊形均為正方形,且邊長是1.如果三角形的頂點(diǎn)均在網(wǎng)格交點(diǎn)處,我們稱這樣的三角形為格點(diǎn)三角形.下面的三角形均為格點(diǎn)三角形.
(1)如圖1,試判斷△ABC的形狀,并說明理由;
(2)在圖2的網(wǎng)格中,請(qǐng)你以DE為底邊,畫一個(gè)面積為7.5的等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長為4,D是線段BA延長線上的一點(diǎn),以線段CD為邊向CD的左側(cè)作等邊△CDE,連接AE.
(1)△ABC的面積S△ABC= ;
(2)求證:△ACE≌△BCD;
(3)若四邊形ABCE的面積為10,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“珍重生命,注意安全!”同學(xué)們?cè)谏舷聦W(xué)途中一定要注意騎車安全.小明騎單車上學(xué),當(dāng)他騎了一段時(shí)間,想起要買某本書,于是又折回到剛經(jīng)過的新華書店,買到書后繼續(xù)去學(xué)校,以下是他本次所用的時(shí)間與路程的關(guān)系示意圖.根據(jù)圖中提供的信息回答下列問題:
(1)小明家到學(xué)校的路程是 米,小明在書店停留了 分鐘
(2)本次上學(xué)途中,小明一共行駛了 米,一共用了 分鐘.
(3)我們認(rèn)為騎單車的速度超過300米分鐘就超越了安全限度.問:在整個(gè)上學(xué)的途中哪個(gè)時(shí)間段小明騎車速度最快,速度在安全限度內(nèi)嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正六邊形的邊長為,點(diǎn)從點(diǎn)出發(fā)沿運(yùn)動(dòng)至點(diǎn),點(diǎn)是點(diǎn)關(guān)于直線對(duì)稱的點(diǎn).
()點(diǎn)從點(diǎn)運(yùn)動(dòng)至過程中,下列說法正確的有__________.(填序號(hào))
①當(dāng)點(diǎn)運(yùn)動(dòng)到時(shí),線段長為.
②點(diǎn)沿直線從運(yùn)動(dòng)到.
③點(diǎn)沿圓弧從運(yùn)動(dòng)到.
()點(diǎn)從點(diǎn)運(yùn)動(dòng)至的過程中,點(diǎn)到的距離的最小值是__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com