【題目】如圖,AB是⊙O的直徑,AB=AC,AC交⊙O于點E,BC交⊙O于點D,F是CE的中點,連接DF.則下列結論錯誤的是
A.∠A=∠ABEB.
C.BD=DCD.DF是⊙O的切線
【答案】A
【解析】
首先由AB是⊙O的直徑,得出AD⊥BC,推出BD=DC,再由OA=OB,推出OD是△ABC的中位線,得DF⊥OD,即DF是⊙O的切線,最后由假設推出不正確.
解:連接OD,AD.
∵AB是⊙O的直徑,
∴∠ADB=90°(直徑所對的圓周角是直角),
∴AD⊥BC;
而在△ABC中,AB=AC,
∴AD是邊BC上的中線,
∴BD=DC(C選項正確);
∵AB是⊙O的直徑,
∴AD⊥BC,
∵AB=AC,
∴DB=DC,∠BAD=∠CAD,
∴,(B選項正確);
∵OA=OB,
∴OD是△ABC的中位線,
即:OD∥AC,
∵DF⊥AC,
∴DF⊥OD.
∴DF是⊙O的切線(D選項正確);
只有當△ABE是等腰直角三角形時,∠A=∠ABE=45°,
故A選項錯誤,
故選A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、B在x軸的上方,∠AOB=90°,OA、OB分別與函數(shù)、的圖象交于A、B兩點,以OA、OB為鄰邊作矩形AOBC.當點C在y軸上時,分別過點A和點B作AE⊥x軸,BF⊥x軸,垂足分別為E、F,則=_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,AC是弦,點P是BA延長線上一點,連接PC、BC,∠PCA=∠B.
(1)求證:PC是⊙O的切線;
(2)若PC=4,PA=2,求直徑AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,AC=,BC=16.點O在邊BC上,以O為圓心,OB為半徑的弧經(jīng)過點A.P是弧AB上的一個動點.
(1)求半徑OB的長;
(2)如果點P是弧AB的中點,聯(lián)結PC,求∠PCB的正切值;
(3)如果BA平分∠PBC,延長BP、CA交于點D,求線段DP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖16,拋物線y=ax2+3ax+c(a>0)與y軸交于點C,與x軸交于A,B兩點,點A在點B左側.點B的坐標為(1,0),OC=3OB.
(1)求拋物線的解析式.
(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值.
(3)若點E在x軸上,點P在拋物線上.是否存在以A,C,E,P為頂點且以AC為一邊的平行四邊形?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】春曉中學為開展“校園科技節(jié)”活動,計劃購買A型、B型兩種型號的航模.若購買8個A型航模和5個B型航模需用2200元;若購買4個A型航模和6個B型航模需用1520元.求A,B兩種型號航模的單價分別是多少元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①、圖②是某校調(diào)查部分學生是否知道母親生日情況的扇形和條形統(tǒng)計圖:根據(jù)圖中信息,解答下列問題:
(1)求本次被調(diào)查學生的人數(shù);
(2)請補全條形統(tǒng)計圖;
(3)若全校共有2700名學生,請估計這所學校有多少名學生知道母親的生日.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線y=kx(k≠0)經(jīng)過點(12,﹣5),將直線向上平移m(m>0)個單位,若平移后得到的直線與半徑為6的⊙O相交(點O為坐標原點),則m的取值范圍為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x,點A1坐標為(1,0),過點A1作x軸的垂線交直線于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸于點A2;再過點A2作x軸的垂線交直線于點B2,以原點O為圓心,OB2長為半徑畫弧交x軸于點A3,…,按此做法進行下去,點An的坐標為__.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com